TOTAL MAXIMUM DAILY LOAD (TMDL)

for

E. Coli

in the

Nolichucky River Watershed (HUC 06010108)

Cocke, Greene, Hamblen, Hawkins, Unicoi, and Washington

Counties, Tennessee

FINAL

Prepared by:

Tennessee Department of Environment and Conservation Division of Water Pollution Control 6th Floor L & C Tower 401 Church Street Nashville, TN 37243-1534

> Submitted February 14, 2007 Approved by EPA Region 4 – March 5, 2007

TABLE OF CONTENTS

1.0		1
2.0	SCOPE OF DOCUMENT	1
3.0	WATERSHED DESCRIPTION	1
4.0	PROBLEM DEFINITION	7
5.0	WATER QUALITY CRITERIA & TMDL TARGET	8
6.0	WATER QUALITY ASSESSMENT AND DEVIATION FROM TARGET	13
7.0	SOURCE ASSESSMENT	24
7.1 7.2	Point Sources Nonpoint Sources	
8.0	DEVELOPMENT OF TOTAL MAXIMUM DAILY LOADS	36
8.1 8.2 8.3 8.4 8.5 8.6 8.7	Expression of TMDLs, WLAs, & LAs Area Basis for TMDL Analysis TMDL Analysis Methodology Critical Conditions and Seasonal Variation Margin of Safety Determination of TMDLs Determination of WLAs & LAs	
9.0	IMPLEMENTATION PLAN	42
9.1 9.2 9.3 9.4 9.5 9.6	Point Sources Nonpoint Sources Application of Load Duration Curves for Implementation Planning Additional Monitoring Source Identification Evaluation of TMDL Implementation Effectiveness	
10.0	PUBLIC PARTICIPATION	49
11.0	FURTHER INFORMATION	50
REFER	RENCES	51

APPENDICES

Appendix		Page
А	Land Use Distribution in the Nolichucky River Watershed	A-1
В	Water Quality Monitoring Data	B-1
С	Load Duration Curve Development and Determination of Dailiy Loading Functions and Required Load Reductions	C-1
D	Hydrodynamic Modeling Methodology	D-1
E	Public Notice	E-1

LIST OF FIGURES

Figure		Page
1	Location of the Nolichucky River Watershed	4
2	Level IV Ecoregions in the Nolichucky River Watershed	5
3	Land Use Characteristics of the Nolichucky River Watershed	6
4	Waterbodies Impaired by Pathogens (as documented on the Final 2006 303(d) List)	12
5	Overview of Water Quality Monitoring Stations in the Nolichucky River Watershed 17	
6	Water Quality Monitoring Stations in the Big and Little Limestone Creek Subwatersheds (HUC12s 0206, 0401, 0402)	18
7	Water Quality Monitoring Stations in the Sinking, Meadow, Pigeon, and Richland Creek Subwatersheds (HUC12s 0501 – 0506)	19
8	Water Quality Monitoring Stations in the Bent, Flat, and Long Creek Subwatersheds (HUC12s 0601, 0603 – 0605)	20
9	Water Quality Monitoring Stations in the Lick Creek Subwatershed (HUC12s 0701 – 0705)	21
10	NPDES Regulated Point Sources in and near Impaired Subwatersheds and Drainage Areas of the Nolichucky River Watershed	26
11	Class I and II CAFOs in and near Impaired Subwatersheds and Drainage Areas of the Nolichucky River Watershed	29
12	Land Use Area of Nolichucky E. coli-Impaired Subwatersheds Drainage Areas Greater Than 30,000 Acres	33
13	Land Use Percent of Nolichucky E. coli-Impaired Subwatersheds – Drainage Areas Greater Than 30,000 Acres	33
14	Land Use Area of Nolichucky E. coli-Impaired Subwatersheds Drainage Areas Between 15,000 and 30,000 Acres	34
15	Land Use Percent of Nolichucky E. coli-Impaired Subwatersheds – Drainage Areas Between 15,000 and 30,000 Acres 34	
16	Land Use Area of Nolichucky E. coli-Impaired Subwatersheds Drainage Areas Less Than 15,000 Acres	35
17	Land Use Percent of Nolichucky E. coli-Impaired Subwatersheds – Drainage Areas Less Than 15,000 Acres	35
18	Tennessee Department of Agriculture Best Management Practices located in the Nolichucky River Watershed	45
19	Sample E. Coli Load Duration Curve	46

LIST OF FIGURES (cont'd)

Figure	<u>.</u>	Page
C-1	Flow Duration Curve for Big Limestone Creek at Mile 0.5	C-8
C-2	E. Coli Load Duration Curve for Little Limestone Creek at Mile 7.0	C-8
C-3	E. Coli Load Duration Curve for Muddy Fork at Mile 0.4	C-9
C-4	E. Coli Load Duration Curve for Muddy Fork at Mile 7.1	C-9
C-5	E. Coli Load Duration Curve for Big Limestone Creek at Mile 0.5	C-10
C-6	E. Coli Load Duration Curve for Big Limestone Creek at Mile 7.7	C-10
C-7	E. Coli Load Duration Curve for Carson Creek at Mile 0.1	C-11
C-8	E. Coli Load Duration Curve for Jockey Creek at Mile 3.2	C-11
C-9	E. Coli Load Duration Curve for Sinking Creek at Mile 3.0	C-12
C-10	E. Coli Load Duration Curve for Sinking Creek at Mile 4.5	C-12
C-11	E. Coli Load Duration Curve for Richland Creek at Mile 1.3	C-13
C-12	E. Coli Load Duration Curve for Meadow Creek at Mile 0.4	C-13
C-13	E. Coli Load Duration Curve for Meadow Creek at Mile 2.7	C-14
C-14	E. Coli Load Duration Curve for Pigeon Creek at Mile 0.9	C-14
C-15	E. Coli Load Duration Curve for Pigeon Creek at Mile 2.8	C-15
C-16	E. Coli Load Duration Curve for Lick Creek at Mile 52.3	C-15
C-17	E. Coli Load Duration Curve for Lick Creek at Mile 61.0	C-16
C-18	E. Coli Load Duration Curve for Pyborn Creek at Mile 0.1	C-16
C-19	E. Coli Load Duration Curve for Lick Creek at Mile 33.6	C-17
C-20	E. Coli Load Duration Curve for Lick Creek at Mile 1.0	C-17
C-21	E. Coli Load Duration Curve for Lick Creek at Mile 11.9	C-18
C-22	E. Coli Load Duration Curve for Lick Creek at Mile 20.5	C-18
C-23	E. Coli Load Duration Curve for Mink Creek at Mile 1.0	C-19
C-24	E. Coli Load Duration Curve for Potter Creek at Mile 0.3	C-19

LIST OF FIGURES (cont'd)

<u>Figure</u>		Page
D-1	Hydrologic Calibration: Sinking Creek at Afton, USGS 03466228 (WYs 1991-2000)	D-4
D-2	10-Year Hydrologic Comparison: Sinking Creek at Afton, USGS 03466228	D-4
D-3	Hydrologic Calibration: Little Pigeon River, USGS 03470000 (WYs 1972-1981)	D-6
D-4	10-Year Hydrologic Comparison: Little Pigeon River, USGS 03470000	D-6
D-5	Hydrologic Calibration: Nolichucky River at Embreeville, USGS 03465500 (WYs 1995-2004)	D-8
D-6	10-Year Hydrologic Comparison: Nolichucky River at Embreeville, USGS 03465500	D-8

LIST OF TABLES

Table			Page
1	MRLC Land Use Distribution – Nolichucky River Watershed	7	
2	2006 Final 303(d) List for E. coli – Nolichucky River Watershed		9
3	Summary of TDEC Water Quality Monitoring Data		22
4	NPDES Permitted WWTFs in Impaired Subwatersheds or Drainage Areas		25
5	Class I and II CAFOs in Impaired Subwatersheds or Drainage Areas		28
6	Livestock Distribution in the Nolichucky River Watershed		31
7	Population on Septic Systems in the Nolichucky River Watershed		32
8	Determination of Analysis Areas for TMDL Development		37
9	TMDLs, WLAs & Las for Impaired Subwatersheds and Drainage Areas in the Nolichucky River Watershed		40
10	Sample Load Duration Curve Summary		47
11	Example Implementation Strategies		47
A-1	MRLC Land Use Distribution of Nolichucky River Subwatersheds		A-2
B-1	TDEC Water Quality Monitoring Data – Nolichucky River Subwatersheds		B-2
C-1	Required Reduction for Hominy Branch – Mile 0.2		C-20
C-2	Required Reduction for Little Limestone Creek – Mile 7.0		C-20
C-3	Required Reduction for Little Limestone Creek – Mile 7.7		C-21
C-4	Required Reduction for Muddy Fork – Mile 0.4		C-21
C-5	Required Reduction for Muddy Fork – Mile 7.1		C-22
C-6	Required Reduction for Big Limestone Creek – Mile 0.5		C-23
C-7	Required Reduction for Big Limestone Creek – Mile 7.7		C-24
C-8	Required Reduction for Carson Creek – Mile 0.1		C-25
C-9	Required Reduction for Jockey Creek – Mile 3.2		C-26
C-10	Required Reduction for Sinking Creek – Mile 3.0		C-27
C-11	Required Reduction for Sinking Creek – Mile 4.5		C-28
C-12	Required Reduction for Richland Creek – Mile 1.3		C-29

LIST OF TABLES (cont'd)

Table		Page
C-13	Required Reduction for Richland Creek – Mile 6.0	C-30
C-14	Required Reduction for Meadow Creek – Mile 0.4	C-31
C-15	Required Reduction for Meadow Creek – Mile 2.7	C-32
C-16	Required Reduction for Pigeon Creek – Mile 0.9	C-33
C-17	Required Reduction for Pigeon Creek – Mile 2.8	C-34
C-18	Required Reduction for Nolichucky River – Mile 5.3	C-35
C-19	Required Reduction for Bent Creek – Mile 7.2	C-36
C-20	Required Reduction for Mud Creek – Mile 0.4	C-37
C-21	Required Reduction for Flat Creek – Mile 0.6 C-3	38
C-22	Required Reduction for Long Creek – Mile 0.7	C-39
C-23	Required Reduction for Lick Creek – Mile 52.3	C-40
C-24	Required Reduction for Lick Creek – Mile 61.0	C-41
C-25	Required Reduction for Pyborn Creek – Mile 0.1	C-42
C-26	Required Reduction for Lick Creek – Mile 33.6	C-43
C-27	Required Reduction for Lick Creek – Mile 45.2	C-44
C-28	Required Reduction for Puncheon Camp Creek – Mile 0.5	C-44
C-29	Required Reduction for Lick Creek – Mile 1.0 C-4	45
C-30	Required Reduction for Lick Creek – Mile 3.8 C-4	46
C-31	Required Reduction for Lick Creek – Mile 6.5 C-4	46
C-32	Required Reduction for Lick Creek – Mile 11.9	C-47
C-33	Required Reduction for Lick Creek – Mile 15.5	C-48
C-34	Required Reduction for Lick Creek – Mile 20.5	C-48
C-35	Required Reduction for Mink Creek – Mile 1.0	C-49
C-36	Required Reduction for Potter Creek – Mile 0.3	C-50
C-37	TMDLs, WLAs, & LAs for Nolichucky River Watershed	C-51
C-38	Required Reductions to Achieve TMDLs, WLAs, & LAs for Nolichucky River Watershee	d C-53
D-1	Hydrologic Calibration Summary: Sinking Creek at Afton (USGS 03466228)	D-3
D-1 D-2	Hydrologic Calibration Summary: Little Pigeon River (USGS 03470000)	D-5
D-2 D-3	Hydrologic Calibration Summary: Nolichucky River at Embreeville (USGS 03470000)	D-3 D-7
D-3		D-1

LIST OF ABBREVIATIONS

ADB	Assessment Database
AFO	Animal Feeding Operation
BMP	Best Management Practices
BST	Bacteria Source Tracking
CAFO	Concentrated Animal Feeding Operation
CFR	Code of Federal Regulations
CFS	Cubic Feet per Second
CFU	Colony Forming Units
DEM	Digital Elevation Model
DWPC	Division of Water Pollution Control
E. coli	Escherichia coli
EPA	Environmental Protection Agency
GIS	Geographic Information System
HSPF	Hydrological Simulation Program - Fortran
HUC	Hydrologic Unit Code
LA	Load Allocation
LDC	Load Duration Curve
LSPC	Loading Simulation Program in C ⁺⁺
MGD	Million Gallons per Day
MOS	Margin of Safety
MRLC	Multi-Resolution Land Characteristic
MS4	Municipal Separate Storm Sewer System
MST	Microbial Source Tracking
NHD	National Hydrography Dataset
NMP	Nutrient Management Plan
NPS	Nonpoint Source
NPDES	National Pollutant Discharge Elimination System
NRCS	Natural Resources Conservation Service
PCR	Polymerase Chain Reaction
PDFE	Percent of Days Flow Exceeded
PFGE	Pulsed Field Gel Electrophoresis
Rf3	Reach File v.3
RM	River Mile
SSO	Sanitary Sewer Overflow
STP	Sewage Treatment Plant
SWMP	Storm Water Management Program
TDA	Tennessee Department of Agriculture
TDEC	Tennessee Department of Environment & Conservation
TDOT	Tennessee Department of Transportation
TMDL	Total Maximum Daily Load
TWRA	Tennessee Wildlife Resources Agency
USGS	United States Geological Survey
UCF	Unit Conversion Factor
WCS	Watershed Characterization System
WLA	Waste Load Allocation
WWTF	Wastewater Treatment Facility

SUMMARY SHEET

Total Maximum Daily Load for E. coli in Nolichucky River Watershed (HUC 06010108)

Impaired Waterbody Information

State: Tennessee Counties: Cocke, Greene, Hamblen, and Washington Watershed: Nolichucky (HUC 06010108) Constituents of Concern: E. coli

Impaired Waterbodies Addressed in This Document:

Waterbody ID	Waterbody	Miles Impaired
TN06010108001 – 0100	FLAT CREEK	4.9
TN06010108001 – 1000	NOLICHUCKY RIVER	4.0
TN06010108001 – 2000	NOLICHUCKY RIVER	7.7
TN06010108005 – 2000	NOLICHUCKY RIVER	6.6
TN06010108007 – 1000	MEADOW CREEK	23.4
TN06010108030 – 0200	JOCKEY CREEK	8.0
TN06010108030 – 0220	CARSON CREEK	17.9
TN06010108030 – 0430	MUDDY FORK	23.8
TN06010108030 – 1000	BIG LIMESTONE CREEK	3.1
TN06010108030 – 2000	BIG LIMESTONE CREEK	8.8
TN06010108033 – 1000	PIGEON CREEK	8.8
TN06010108035 – 0200	POTTER CREEK	15.3
TN06010108035 – 0900	PUNCHEON CAMP CREEK	11.5
TN06010108035 – 1000	LICK CREEK	3.9
TN06010108035 – 1800	PYBORN CREEK	6.4
TN06010108035 – 2000	LICK CREEK	2.3
TN06010108035 – 2800	MINK CREEK	9.1
TN06010108035 – 3000	LICK CREEK	7.4
TN06010108035 – 4000	LICK CREEK	4.9
TN06010108035 - 5000,6000,7000	LICK CREEK	36.1
TN06010108035 – 8000	LICK CREEK	7.2
TN06010108035 – 9000	LICK CREEK	7.7

Waterbody ID	Waterbody	Miles Impaired
TN06010108042 - 0600	MUD CREEK	8.2
TN06010108042 – 1000	BENT CREEK	13.7
TN06010108043 – 1000	LONG CREEK	13.5
TN06010108064 – 1000,2000	SINKING CREEK	23.4
TN06010108102 – 2000	RICHLAND CREEK	6.1
TN06010108510 – 0400	HOMINY CREEK	7.0
TN06010108510 - 1000	LITTLE LIMESTONE CREEK	8.0
TN06010108510 - 2000	LITTLE LIMESTONE CREEK	13.5

Designated Uses:

The designated use classifications for waterbodies in the Nolichucky River Watershed include fish and aquatic life, irrigation, livestock watering & wildlife, and recreation. Portions of Sinking Creek (Mile 5.2 to origin), Lick Creek (Mile 49.0 to origin), and Nolichucky River (Mile 0.0 to 5.3 and Mile 7.7 to state line) are also designated for domestic water supply.

Water Quality Targets:

Derived from State of Tennessee Water Quality Standards, Chapter 1200-4-3, General Water Quality Criteria, January, 2004 for recreation use classification (most stringent):

The concentration of the E. coli group shall not exceed 126 colony forming units per 100 mL, as a geometric mean based on a minimum of 5 samples collected from a given sampling site over a period of not more than 30 consecutive days with individual samples being collected at intervals of not less than 12 hours. For the purposes of determining the geometric mean, individual samples having an E. coli concentration of less than 1 per 100 mL shall be considered as having a concentration of 1 per 100 mL. In addition, the concentration of the E. coli group in any individual sample taken from a lake, reservoir, State Scenic River, or Tier II or III stream (1200-4-3-.06) shall not exceed 487 colony forming units per 100 mL. The concentration of the E. coli group in any other waterbody shall not exceed 941 colony forming units per 100 mL.

TMDL Scope:

Waterbodies identified on the Final 2006 303(d) list as impaired due to E. coli. TMDLs were developed for impaired waterbodies on a HUC-12 subwatershed or waterbody drainage area basis.

Analysis/Methodology:

The TMDLs for impaired waterbodies in the Nolichucky River Watershed were developed and expressed as the daily allowable load that assures compliance with the E. Coli 487 CFU/100 mL maximum water quality criteria for Tier II waterbodies and 941 CFU/100 mL maximum water quality criteria for non-Tier II waterbodies. Load reductions were also developed using a load duration curve methodology to assure compliance with the appropriate maximum water quality criteria. A duration curve is a cumulative frequency graph that represents the percentage of time during which the value of a given parameter is equaled or exceeded. Load duration curves are developed from flow duration curves and can illustrate existing water quality conditions (as represented by loads calculated from monitoring data), how these conditions compare to desired targets, and the region of the waterbody flow regime represented by these existing loads. Load duration curves were used to determine the daily load expressions and subsequent percent load reductions required to meet desired maximum concentrations for E. coli. When sufficient data were available, load reductions may also be determined based on geometric mean criteria.

Critical Conditions:

Water quality data collected over a period of 10 years for load duration curve analysis were used to assess the water quality standards representing a range of hydrologic and meteorological conditions.

Seasonal Variation:

The 10-year period used for LSPC model simulation period for development of load duration curve analysis included all seasons and a full range of flow and meteorological conditions.

Margin of Safety (MOS):

Explicit MOS = 10% of the E. coli water quality criteria for each impaired subwatershed or drainage area.

Summary of TMDLs, WLAs, & LAs expressed as daily loads for Impaired Waterbodies in the Nolichucky River Watershed (HUC 06010108)

					WLAs				
HUC-12 Subwatershed (06010108_) or Drainage Area (DA)	Impaired Waterbody Name	Impaired Waterbody ID	TMDL	MOS	WWTFs ^a	Leaking Collection Systems °	CAFOs	MS4s ^d	LAs
			[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day/acre]	[CFU/day/acre]
	Little Limestone Creek	TN06010108510 - 1000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	1.920 x 10 ^{10,b}	NA	NA	2.122 x 10 ⁶ * Q – 1.968 x 10 ⁶	2.122 x 10 ⁶ * Q – 1.968 x 10 ⁶
0206	Little Limestone Creek	TN06010108510 - 2000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	1.920 x 10 ^{10,b}	0	NA	1.046 x 10 ⁶ * Q – 9.698 x 10 ⁵	1.046 x 10 ⁶ * Q − 9.698 x 10 ⁵
	Hominy Branch	TN06010108510 - 0400	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	8.434 x 10 ⁶ * Q	8.434 x 10 ⁶ * Q
0401	Muddy Fork	TN06010108030 - 0430	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	2.042 x 10 ⁶ * Q	2.042 x 10 ⁶ * Q
	Big Limestone Creek	TN06010108030 - 1000	1.20 x 10 ¹⁰ * Q	1.20 x 10 ⁹ * Q	1.781 x 10 ⁸	NA	NA	2.246 x 10 ⁵ * Q – 3.704 x 10 ³	2.246 x 10 ⁵ * Q − 3.704 x 10 ³
0402	Big Limestone Creek	TN06010108030 - 2000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	1.781 x 10 ⁸	NA	NA	6.142 x 10 ⁵ * Q − 5.285 x 10 ³	6.142 x 10 ⁵ * Q – 5.285 x 10 ³
	Carson Creek	TN06010108030 - 0220	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	3.375 x 10 ⁶ * Q	3.375 x 10 ⁶ * Q
	Jockey Creek	TN06010108030 - 0200	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	1.859 x 10 ⁶ * Q	1.859 x 10 ⁶ * Q
0501 (DA)	Sinking Creek	TN06010108064 - 1000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	8.548 x 10 ⁸	NA	NA	NA	2.186 x 10 ⁶ * Q − 9.026 x 10 ⁴
0001 (DA)	Sinking Creek	TN06010108064 – 2000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	NA	3.252 x 10 ⁶ * Q
0504	Richland Creek	TN06010108102 - 2000	1.20 x 10 ¹⁰ * Q	1.20 x 10 ⁹ * Q	NA	0	NA	1.207 x 10 ⁶ * Q	1.207 x 10 ⁶ * Q
	Nolichucky River	TN06010108005 - 2000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	2.773 x 10 ^{11,b}	NA	0	NA	1.360 x 10 ⁴ * Q − 3.493 x 10 ⁵
0505	Meadow Creek	TN06010108007 - 1000	1.20 x 10 ¹⁰ * Q	1.20 x 10 ⁹ * Q	3.318 x 10 ⁸	NA	0	NA	8.513 x 10 ⁵ * Q – 2.615x 10⁴
	Pigeon Creek	TN06010108033 - 1000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	0	NA	NA	5.169 x 10 ⁶ * Q
0004	Nolichucky River	TN06010108001 - 1000	1.20 x 10 ¹⁰ * Q	1.20 x 10 ⁹ * Q	2.773 x 10 ^{11,b}	NA	0	1.007 x 10 ⁴ * Q − 2.586 x 10 ⁵	1.007 x 10 ⁴ * Q − 2.586 x 10 ⁵
0601	Nolichucky River	TN06010108001 - 2000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	2.773 x 10 ^{11,b}	NA	0	1.021 x 10 ⁴ * Q – 2.621 x 10 ⁵	1.021 x 10 ⁴ * Q − 2.621 x 10 ⁵
0000	Bent Creek	TN06010108042 - 1000	1.20 x 10 ¹⁰ * Q	1.20 x 10 ⁹ * Q	NA	NA	0	3.645 x 10 ⁵ * Q	3.645 x 10 ⁵ * Q
0603	Mud Creek	TN06010108042 - 0600	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	9.675 x 10 ⁶ * Q	9.675 x 10 ⁶ * Q
0604	Flat Creek	TN06010108001 - 0100	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	3.919 x 10 ⁶ * Q	3.919 x 10 ⁶ * Q
0605	Long Creek	TN06010108043 - 1000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	9.509 x 10 ⁵ * Q	9.509 x 10 ⁵ * Q

					WLAs				
HUC-12 Subwatershed (06010108_) or Drainage Area	Impaired Waterbody Name	Impaired Waterbody ID	TMDL	MOS	WWTFs ^a	Leaking Collection Systems	CAFOs	MS4s °	LAs
(DA)			[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day/acre]	[CFU/day/acre]
	Lick Creek	TN06010108035 - 8000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	0	NA	6.173 x 10 ⁵ * Q
0701	Lick Creek	TN06010108035 – 9000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	NA	2.669 x 10 ⁶ * Q
	Pyborn Creek	TN06010108035 - 1800	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	NA	7.720 x 10 ⁶ * Q
	Lick Creek	TN06010108035 - 6000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	3.882 x 10 ⁹	NA	0	NA	1.920 x 10 ⁵ * Q – 3.601 x 10 ⁴
0702	Lick Creek	TN06010108035 – 7000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	3.562 x 10 ⁹	0	NA	NA	3.332 x 10 ⁵ * Q – 5.733 x 10⁴
	Puncheon Camp Creek	TN06010108035 - 0900	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	NA	4.469 x 10 ⁶ * Q
	Lick Creek	TN06010108035 – 1000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	3.889 x 10 ¹⁰	NA	NA	NA	1.251 x 10 ⁵ * Q – 2.350 x 10 ⁵
	Lick Creek	TN06010108035 - 2000	1.20 x 10 ¹⁰ * Q	1.20 x 10 ⁹ * Q	3.889 x 10 ¹⁰	NA	NA	NA	6.546 x 10 ⁴ * Q – 2.357 x 10 ⁵
	Lick Creek	TN06010108035 - 3000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	3.861 x 10 ¹⁰	NA	NA	NA	1.268 x 10 ⁵ * Q – 2.365 x 10 ⁵
0705	Lick Creek	TN06010108035 – 4000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	3.861 x 10 ¹⁰	NA	NA	NA	1.376 x 10 ⁵ * Q – 2.567 x 10 ⁵
	Lick Creek	TN06010108035 – 5000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	3.861 x 10 ¹⁰	0	NA	NA	1.385 x 10 ⁵ * Q – 2.583 x 10 ⁵
	Mink Creek	TN06010108035 - 2800	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	0	NA	NA	3.400 x 10 ⁶ * Q
	Potter Creek	TN06010108035 - 0200	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	NA	4.376 x 10 ⁶ * Q

Summary of TMDLs, WLAs, & LAs expressed as daily loads for Impaired Waterbodies in the Nolichucky River Watershed (HUC 06010108) (cont'd)

Notes: NA = Not Applicable.

Q = Mean Instream Daily Flow (cfs)

a. WLAs for WWTFs are expressed as E. coli loads (CFU/day). All current and future WWTFs must meet water quality standards at the point of discharge as specified in their NPDES permit; at no time shall concentration be greater than the appropriate E. coli standard (487 CFU/100 mL or 941 CFU/100 mL).

b. The WLA listed is for the subwatershed and is equal to the sum of the WLAs for the individual facilities. WLAs for individual WWTFs correspond to existing E. coli permit limits at facility design flow.

c. Applies to any MS4 discharge loading in the subwatershed.

PROPOSED E. COLI TOTAL MAXIMUM DAILY LOAD (TMDL) NOLICHUCKY RIVER WATERSHED (HUC 06010108)

1.0 INTRODUCTION

Section 303(d) of the Clean Water Act requires each state to list those waters within its boundaries for which technology based effluent limitations are not stringent enough to protect any water quality standard applicable to such waters. Listed waters are prioritized with respect to designated use classifications and the severity of pollution. In accordance with this prioritization, states are required to develop Total Maximum Daily Loads (TMDLs) for those waterbodies that are not attaining water quality standards. State water quality standards consist of designated uses for individual waterbodies, appropriate numeric and narrative water quality criteria protective of the designated uses, and an antidegradation statement. The TMDL process establishes the maximum allowable loadings of pollutants for a waterbody that will allow the waterbody to maintain water quality standards. The TMDL may then be used to develop controls for reducing pollution from both point and nonpoint sources in order to restore and maintain the quality of water resources (USEPA, 1991).

2.0 SCOPE OF DOCUMENT

This document presents details of TMDL development for waterbodies in the Nolichucky River Watershed, identified on the Final 2006 303(d) list as not supporting designated uses due to E. coli. Portions of the Nolichucky River Watershed lie in both Tennessee and North Carolina. This document addresses only impaired waterbodies in Tennessee. TMDL analyses were performed primarily on a 12-digit hydrologic unit area (HUC-12) basis. In some cases, where appropriate, TMDLs were developed for an impaired waterbody drainage area only.

3.0 WATERSHED DESCRIPTION

The Nolichucky River Watershed (HUC 06010108) is located in Eastern Tennessee (Figure 1), primarily in Greene, Unicoi, and Washington Counties. The Nolichucky River Watershed lies within two Level III ecoregions (Blue Ridge Mountains, Ridge and Valley) and contains eight Level IV ecoregions as shown in Figure 2 (USEPA, 1997):

• Southern Igneous Ridges and Mountains (66d) occur in Tennessee's northeastern Blue Ridge near the North Carolina border, primarily on Precambrian-age igneous and high-grade metamorphic rocks. The typical crystalline rock types include granite, gneiss, schist, and metavolcanics, covered by well-drained, acidic brown loamy soils. Elevations of this rough, dissected region range from 2000-6200 feet, with Roan Mountain reaching 6286 feet. Although there are a few small areas of pasture and apple orchards, the region is mostly forested; Appalachian oak and northern hardwood forests predominate.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page 2 of 52

- The Southern Sedimentary Ridges (66e) in Tennessee include some of the westernmost foothill areas of the Blue Ridges Mountains ecoregion, such as the Bean, Starr, Chilhowee, English, Stone, Bald, and Iron Mountain areas. Slopes are steep, and elevations are generally 1000-4500 feet. The rocks are primarily Cambrian-age sedimentary (shale, sandstone, siltstone, quartzite, conglomerate), although some lower stream reachs occur on limestone. Soils are predominantly friable loams and fine sandy loams with variable amounts of sandstone rock fragments, and support mostly mixed oak and oak-pine forests.
- Limestone Valleys and Coves (66f) are small but distinct lowland areas of the Blue Ridge, with elevations mostly between 1500 and 2500 feet. About 450 million years ago, older Blue Ridge rocks to the east were forced up and over younger rocks to the west. In places, the Precambrian rocks have eroded through to Cambrian or Ordovician-age limestones, as seen especially in isolated, deep cove areas that are surrounded by steep mountains. The main areas of limestone include the Mountain City lowland area and Shady Valley in the north; and Wear Cove, Tuckaleechee Cove, and Cades Cove of the Great Smoky Mountains in the south. Hay and pasture, with some tobacco patches on small farms, are typical land uses.
- The Southern Metasedimentary Mountains (66g) are steep, dissected, biologicallydiverse mountains that include Clingmans Dome (6643 feet), the highest point in Tennessee. The Precambrian-age metamorphic and sedimentary geologic materials are generally older and more metamorphosed than the Southern Sedimentary Ridges (66e) to the west and north. The Appalachian oak forests and, at higher elevations, the northern hardwoods forests include a variety of oaks and pines, as well as silverbell, hemlock, yellow poplar, basswood, buckeye, yellow birch, and beech. Spruce-fir forests, found generally above 5500 feet, have been affected greatly over the past twenty-five years by the balsam woolly aphid. The Copper Basin, in the southeast corner of Tennessee, was the site of copper mining and smelting from the 1850's to 1987, and once left more than fifty square miles of eroded earth.
- The Southern Limestone/Dolomite Valleys and Low Rolling Hills (67f) form a heterogeneous region composed predominantly of limestone and cherty dolomite. Landforms are mostly low rolling ridges and valleys, and the solids vary in their productivity. Landcover includes intensive agriculture, urban and industrial, or areas of thick forest. White oak forests, bottomland oak forests, and sycamore-ash-elm riparian forests are the common forest types, and grassland barrens intermixed with cedar-pine glades also occur here.
- The Southern Shale Valleys (67g) consist of lowlands, rolling valleys, and slopes and hilly areas that are dominated by shale materials. The northern areas are associated with Ordovician-age calcareous shale, and the well-drained soils are often slightly acid to neutral. In the south, the shale valleys are associated with Cambrian-age shales that contain some narrow bands of limestone, but the soils tend to be strongly acid. Small farms and rural residences subdivide the land. The steeper slopes are used for pasture or have reverted to brush and forested land, while small fields of hay, corn , tobacco, and garden crops are grown on the foot slopes and bottomland.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page 3 of 52

- The Southern Sandstone Ridges (67h) ecoregion encompasses the major sandstone ridges, but these ridges also have areas of shale and siltstone. The steep, forested chemistry of streams flowing down the ridges can vary greatly depending on the geologic material. The higher elevation ridges are in the north, including Wallen Ridge, Powell Mountain, Clinch Mountain, and Bays Mountain. White Oak Mountain in the south has some sandstone on the west side, but abundant shale and limestone as well. Grindstone Mountain, capped by the Gizzard Group sandstone, is the only remnant of Pennsylvanian-age strata in the Ridge and Valley of Tennessee.
- The Southern Dissected Ridges and Knobs (67i) contain more crenulated, broken, or hummocky ridges, compared to smoother, more sharply pointed sandstone ridges. Although shale is common, there is a mixture and interbedding of geologic materials. The ridges on the east side of Tennessee's Ridge and Valley tend to be associated with the Ordovician-age Sevier shale, Athens shale, and Holston and Lenoir limestones. These can include calcareous shale, limestone, siltstone, sandstone, and conglomerate. In the central and western part of the ecoregion, the shale ridges are associated with the Cambrian-age Rome Formation: shale and siltstone with beds of sandstone. Chestnut oak forests and pine forests are typical for the higher elevations of the ridges, with areas of white oak, mixed mesophytic forest, and tulip poplar on the lower slopes, knobs, and draws.

The Nolichucky River Watershed, located in Cocke, Greene, Hamblen, Hawkins, Unicoi, and Washington Counties, Tennessee, has a drainage area of approximately 1,128 square miles (mi²) in Tennessee. The entire watershed, including both Tennessee and North Carolina, drains approximately 1,744 square miles. Watershed land use distribution is based on the Multi-Resolution Land Characteristic (MRLC) databases derived from Landsat Thematic Mapper digital images from the period 1990-1993. Although changes in the land use of the Nolichucky River Watershed have occurred since 1993 as a result of development, this is the most current land use data available. Land use for the Tennessee portion of the Nolichucky River Watershed is summarized in Table 1 and shown in Figure 3. Predominant land use in the Nolichucky River Watershed is forest (61.2%) followed by pasture (28.1%). Urban areas represent approximately 2.3% of the total drainage area of the watershed. Details of land use distribution of impaired subwatersheds in the Nolichucky River Watershed are presented in Appendix A.

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 4 of 52

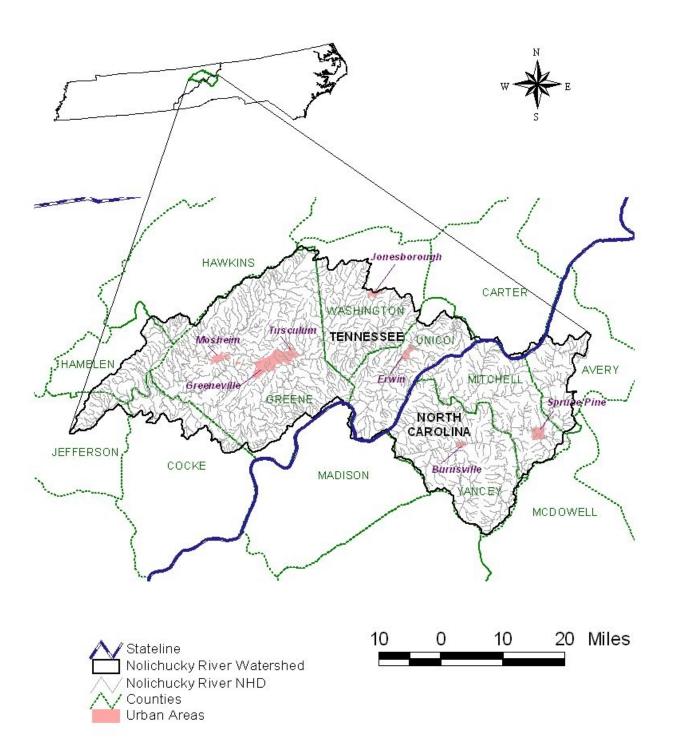


Figure 1. Location of the Nolichucky River Watershed.

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 5 of 52

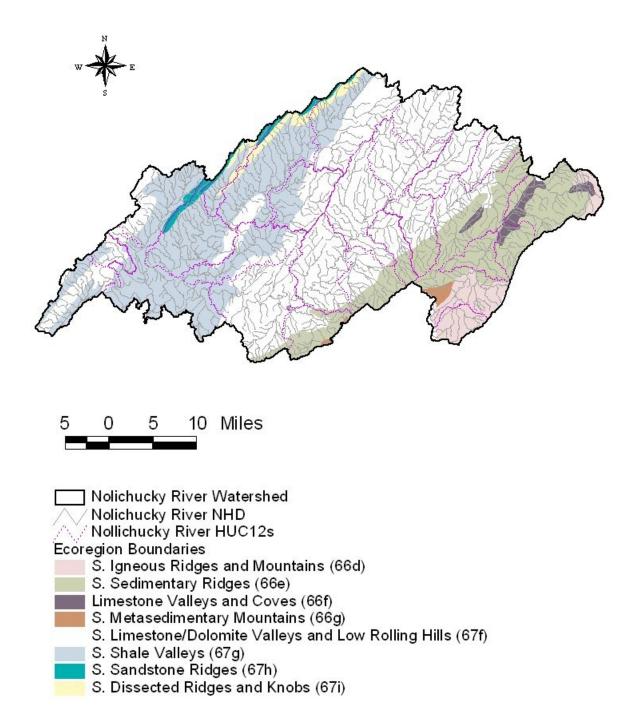


Figure 2. Level IV Ecoregions in the Nolichucky River Watershed.

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 6 of 52

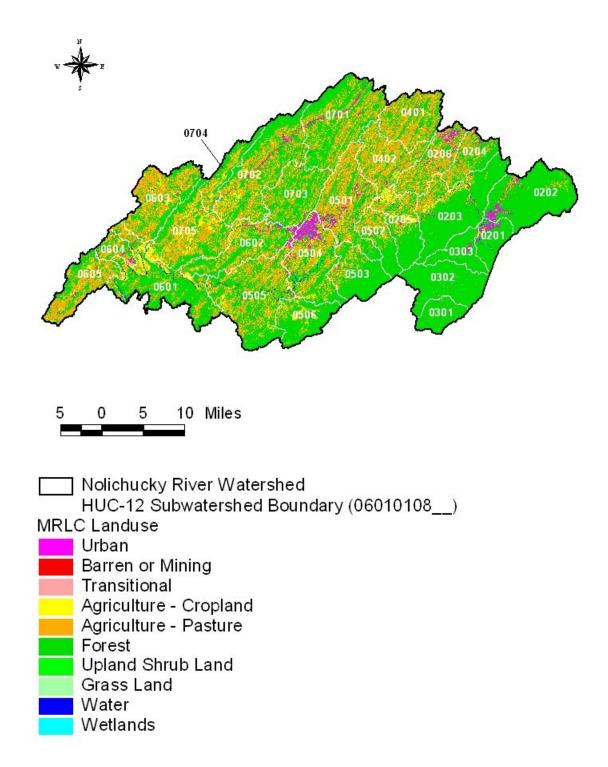


Figure 3. Land Use Characteristics of the Nolichucky River Watershed.

Land Use	Area			
	[acres]	[%]		
Bare Rock/Sand Clay	1,974	0.3		
Deciduous Forest	222,861	30.9		
Emergent Herbaceous Wetlands	162	0.0		
Evergreen Forest	88,332	12.2		
High Intensity Commercial/Industrial/ Transportation	5,799	0.8		
High Intensity Residential	869	0.1		
Low Intensity Residential	10,363	1.4		
Mixed Forest	131,043	18.1		
Open Water	2,608	0.4		
Other Grasses (Urban/recreational)	4,553	0.6		
Pasture/Hay	203,168	28.1		
Quarries/Strip Mines/ Gravel Pits	143	0.0		
Row Crops	49,333	6.8		
Transitional	39	0.0		
Woody Wetlands	1,086	0.2		
Total	722,335	100.0		

Table 1. MRLC Land Use Distribution – Nolichucky River Watershed

4.0 PROBLEM DEFINITION

The State of Tennessee's final 2006 303(d) list (TDEC, 2005) was approved by the U.S. Environmental Protection Agency (EPA), Region IV in October of 2006. This list identified portions of twenty waterbodies in the Nolichucky River Watershed as not supporting designated use classifications due, in part, to E. coli (see Table 2 & Figure 4). The designated use classifications for these waterbodies include fish and aquatic life, irrigation, livestock watering & wildlife, and recreation. Portions of Sinking Creek (Mile 5.2 to origin), Lick Creek (Mile 49.0 to origin), and Nolichucky River (Mile 0.0 to 5.3 and Mile 7.7 to state line) are also designated for domestic water supply.

When used in the context of waterbody assessments, the term pathogens is defined as diseasecausing organisms such as bacteria or viruses that can pose an immediate and serious health threat if ingested or introduced into the body. The primary sources for pathogens are untreated or inadequately treated human or animal fecal matter. The E. coli and fecal coliform groups are indicators of the presence of pathogens in a stream.

5.0 WATER QUALITY CRITERIA & TMDL TARGET

As previously stated, the designated use classifications for the Nolichucky waterbodies include fish & aquatic life, recreation, irrigation, and livestock watering & wildlife. Of the use classifications with numeric criteria for pathogens, the recreation use classification is the most stringent and will be used to establish target levels for TMDL development. The coliform water quality criteria, for protection of the recreation use classification, is established by State of Tennessee Water Quality Standards, Chapter 1200-4-3, General Water Quality Criteria, January 2004 (TDEC, 2004). Section 1200-4-3-.03 (4) (f) states:

The concentration of the E. coli group shall not exceed 126 colony forming units per 100 mL, as a geometric mean based on a minimum of 5 samples collected from a given sampling site over a period of not more than 30 consecutive days with individual samples being collected at intervals of not less than 12 hours. For the purposes of determining the geometric mean, individual samples having an E. coli concentration of less than 1 per 100 mL shall be considered as having a concentration of 1 per 100 mL.

Additionally, the concentration of the E. coli group in any individual sample taken from a lake, reservoir, State Scenic River, or Tier II or III stream (1200-4-3-.06) shall not exceed 487 colony forming units per 100 mL. The concentration of the E. coli group in any individual sample taken from any other waterbody shall not exceed 941 colony forming units per 100 mL.

A portion of Bent Creek (from junction of Warrensburg and Mountain Roads to Mud Creek) has been classified as Tier II. A portion of Sinking Creek (from Afton Road to headwaters) also has been classified as Tier II. Portions of Big Limestone Creek (within Davy Crockett Birthplace State Historic Park), Lick Creek (within the Lick Creek Bottoms Wildlife Management Area), Meadow Creek (within Cherokee National Forest), and Richland Creek (within Nolichucky Waterfowl Sanctuary) have been classified as Tier II. Portions of the Nolichucky River, including the portion from Douglas embayment to Evans Island and the portion within Cherokee National Forest, have been classified as Tier II. As of February 2, 2006, none of the other impaired waterbodies in the Nolichucky River Watershed have been classified as either Tier II or Tier III streams.

The geometric mean standard for the E. coli group of 126 colony forming units per 100 ml (CFU/100 ml) and the sample maximum of 487 CFU/100 ml have been selected as the appropriate numerical targets for TMDL development for impaired waterbodies classified as Tier II streams. The geometric mean standard for the E. coli group of 126 colony forming units per 100 ml (CFU/100 ml) and the sample maximum of 941 CFU/100 ml have been selected as the appropriate numerical targets for TMDL development for the other impaired waterbodies.

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 9 of 52

Waterbody ID	Impacted Waterbody	Miles/Acres Impaired	Cause (Pollutant)	Pollutant Source	
TN06010108001 – 0100	FLAT CREEK	4.9	Escherichia coli	Pasture Grazing	
TN06010108001 – 1000	NOLICHUCKY RIVER	4.0	Loss of biological integrity due to siltation Escherichia coli	Agriculture Source in Other State	
TN06010108001 – 2000	NOLICHUCKY RIVER	7.7	Escherichia coli	Pasture Grazing	
TN06010108005 – 2000	NOLICHUCKY RIVER	6.6	Loss of biological integrity due to siltation Escherichia coli	Agriculture Source in Other State	
TN06010108007 – 1000	MEADOW CREEK	23.4	Escherichia coli	Livestock in Stream	
TN06010108030 – 0200	JOCKEY CREEK	8.0	Nitrate Loss of biological integrity due to siltation Escherichia coli	Pasture Grazing	
TN06010108030 – 0220	CARSON CREEK	17.9	Nitrate Loss of biological integrity due to siltation Escherichia coli	Pasture Grazing Livestock in Stream	
TN06010108030 – 0430	MUDDY FORK	3.0	Escherichia coli	Agriculture	
TN06010108030 – 1000	BIG LIMESTONE CREEK	3.1	Escherichia coli	Pasture Grazing	
TN06010108030 – 2000	BIG LIMESTONE CREEK	8.8	Phosphorus Nitrate Loss of biological integrity due to siltation Escherichia coli	Pasture Grazing	
TN06010108033 – 1000	PIGEON CREEK	8.8	Escherichia coli	Pasture Grazing	

Table 2 Final 2006 303(d) List for E. coli Impaired Waterbodies – Nolichucky River Watershed

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 10 of 52

Table 2 (cont'd). Final 2006 303(d) List for E. coli Impaired Waterbodies – Nolichucky River Watershed

Waterbody ID	Impacted Waterbody	Miles/Acres Impaired	Cause (Pollutant)	Pollutant Source	
TN06010108035 – 0200	POTTER CREEK	15.3	Loss of biological integrity due to siltation Habitat loss due to alteration in stream- side or littoral vegetative cover Escherichia coli	Pasture Grazing	
TN06010108035 – 0900	PUNCHEON CAMP CREEK	11.5	Nutrients Loss of biological integrity due to siltation Escherichia coli	Agriculture	
TN06010108035 – 1000	LICK CREEK	3.9	Nutrients Loss of biological integrity due to siltation Other habitat alterations Escherichia coli	Pasture Grazing	
TN06010108035 – 1800	PYBORN CREEK	6.4	Escherichia coli	Pasture Grazing	
TN06010108035 – 2000	LICK CREEK	2.3	Escherichia coli	Pasture Grazing	
TN06010108035 – 2800	MINK CREEK	9.1	Escherichia coli	Pasture Grazing	
TN06010108035 – 3000	LICK CREEK	7.4	Nutrients Loss of biological integrity due to siltation Habitat loss due to alteration in stream- side or littoral vegetative cover Escherichia coli	Pasture Grazing	
TN06010108035 – 4000	LICK CREEK	4.9	Escherichia coli	Pasture Grazing	
TN06010108035 – 5000	LICK CREEK	17.8	Nutrients		
TN06010108035 – 6000	LICK CREEK	8.9	Loss of biological integrity due to siltation Habitat loss due to alteration in stream- side or littoral vegetative cover	Pasture Grazing	
TN06010108035 – 7000	LICK CREEK	9.4	Escherichia coli		

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 11 of 52

Waterbody ID	Impacted Waterbody	Miles/Acres Impaired	Cause (Pollutant)	Pollutant Source	
TN06010108035 – 8000	LICK CREEK	7.2	Escherichia coli	Pasture Grazing	
TN06010108035 – 9000	LICK CREEK	7.7	Nutrients Loss of biological integrity due to siltation Escherichia coli	Pasture Grazing	
TN06010108042 - 0600	MUD CREEK	8.2	Escherichia coli	Pasture Grazing	
TN06010108042 – 1000	BENT CREEK	13.7	Escherichia coli	Pasture Grazing	
TN06010108043 – 1000	LONG CREEK	13.5	Escherichia coli	Pasture Grazing	
TN06010108064 – 1000	SINKING CREEK	3.8			
TN06010108064 – 2000	SINKING CREEK	19.6	Escherichia coli	Pasture Grazing	
TN06010108102 – 2000	RICHLAND CREEK	6.1	Nutrients Loss of biological integrity due to siltation Habitat loss due to alteration in stream- side or littoral vegetative cover Escherichia coli	Pasture Grazing Discharges from MS4 area	
TN06010108510 – 0400	HOMINY CREEK	7.0	Nitrate Escherichia coli	Agriculture	
TN06010108510 – 1000	LITTLE LIMESTONE CREEK	8.0	Nitrate Escherichia coli	Pasture Grazing	
TN06010108510 – 2000	LITTLE LIMESTONE CREEK	13.5	Habitat loss due to alteration in stream- side or littoral vegetative cover	Pasture Grazing	

Escherichia coli

Table 2 (cont'd). Final 2006 303(d) List for E. coli Impaired Waterbodies – Nolichucky River Watershed

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 12 of 52

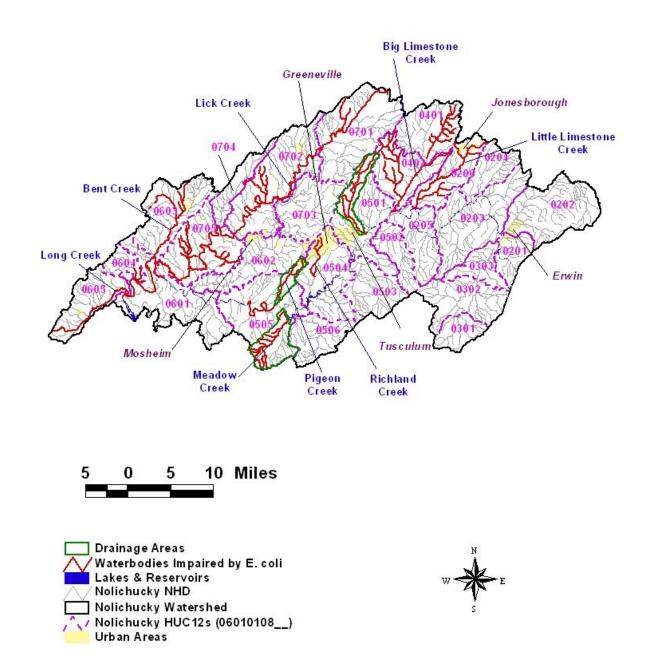


Figure 4. Waterbodies Impaired by E. Coli (as Documented on the Final 2006 303(d) List).

6.0 WATER QUALITY ASSESSMENT AND DEVIATION FROM TARGET

There are several water quality monitoring stations that provide data for waterbodies identified as impaired for E. coli in the Nolichucky River Watershed. Monitoring stations located on Tier II waterbodies have been italicized:

- HUC-12 06010108_0206:
 - HOMIN000.2WN Hominy Branch, 150 yds u/s Gravel Hill Rd.
 - o LLIME000.1WN Little Limestone Creek, 50 yds d/s SR 353 at Broylesville
 - LLIME007.0WN Little Limestone Creek, on New Victory Rd.
 - LLIME007.7WN Little Limestone Creek, 50 yds d/s SR 353, near Davey Crockett High School
- HUC-12 06010108_0401:
 - MUDDY000.4WN Muddy Fork, at Old Stage Rd.
 - MUDDY005.1WN Muddy Fork, at Horseshoe Bend Rd.
 - MUDDY007.1WN Muddy Fork, at Pleasant Valley Rd.
- HUC-12 06010108_0402:
 - o BLIME000.5GE Big Limestone Creek, 100 yds u/s Keebler Rd.
 - o BLIME002.9WN Big Limestone Creek, at bridge, off old SR 34
 - o BLIME004.0WN Big Limestone Creek, 100 yds d/s 11E
 - o BLIME007.7WN Big Limestone Creek, at bridge on Kyker Rd., off US Hwy 11E
 - CARSO000.1WN Carson Creek, 100 yds u/s Clear Spring Rd.
 - o CARSO001.8WN Carson Creek, at Bowmantown Rd.
 - JOCKE000.1WN Jockey Creek, 100 yds u/s Opie Arnold Rd.
 - JOCKE003.2GE Jockey Creek, at Old Stage Rd.
- HUC-12 06010108_0501:
 - SINKI000.2GE Sinking Creek, at Greenwood Rd., off Blackberry Rd.
 - o SINKI000.5GE Sinking Creek, 100 yds u/s Blackberry & Roberts Rd.
 - SINKI003.0GE Sinking Creek, at Old Stage Rd.
 - SINKI004.5GE Sinking Creek, on Afton Rd., 1.3 mi past intersection with Old Stage Rd., at driveway on left
- HUC-12 06010108_0504:
 - RICHL001.3GE Richland Creek, at Links Mill Rd.
 - o RICHL004.3GE Richland Creek, south of Greeneville/Blue Jay Rd.
 - RICHL006.0GE Richland Creek, u/s Old Asheville Hwy at Devils Elbow
 - RICHL007.1GE Richland Creek, in Greeneville, at Jones Bridge Rd.

- HUC-12 06010108_0505:
 - MEADO000.4GE Meadow Creek, west of intersection of W. Allens Bridge and S. Allens
 - MEADO002.7GE Meadow Creek, Nolichucky Rd., off Birdwill Mill Road 100
 - MEADO004.1GE Meadow Creek, St. James Rd., off Cedar Creek Rd.
 - MEADO006.4CO Meadow Creek, gravel drive, 0.15 mi west of Greene/Cocke line, on Long Creek Rd.
 - NOLIC038.5GE Nolichucky River, d/s Pigeon Creek
 - o NOLIC039.3GE Nolichucky River, d/s Pigeon Creek
 - PIGEO000.9GE Pigeon Creek, Buffalo Rd., off Pigeon Creek Rd.
 - PIGEO001.0GE Pigeon Creek, 100 m. u/s Buffalo Rd.
 - o PIGEO002.8GE Pigeon Creek, Gibson Rd., off Hwy 321
 - o PIGEO005.7GE Pigeon Creek, Lick Hollow Rd., off US Hwy 321
- HUC-12 06010108_0601:
 - NOLIC005.3HA Nolichucky River, at Hales bridge
- HUC-12 06010108_0603:
 - o BENT007.2HA Bent Creek, Mud Creek Rd. bridge, on Ralph Ray Rd.
 - ECO67G05 Bent Creek, u/s junction of Warrensburg and Mountain Rd.
 - MUD000.4HA Mud Creek, at Stagecoach Rd. bridge
- HUC-12 06010108_0604:
 - o FLAT000.1HA Flat Creek, 400 yds d/s Hwy 160
 - o FLAT000.6HA Flat Creek, d/s Hwy 160 bridge
 - FLAT001.0HA Flat Creek, 100 yds u/s Chucky River Rd.
- HUC-12 06010108_0605:
 - LONG000.7HA Long Creek, at River Rd.
- HUC-12 06010108_0701:
 - o LICK052.3GE Lick Creek, 100 yds u/s Lost Mountain Pike
 - LICK061.0GE Lick Creek, 100 yds u/s Campbell Rd.
 - PYBOR000.1GE Pyborn Creek, on Barkley Rd., off Woolsey Rd., west of Jearoldstown Rd.
- HUC-12 06010108_0702:
 - o LICK024.2GE Lick Creek, 600 yds u/s Hwy 34
 - LICK033.6GE Lick Creek, 25 yds u/s Old SR 70
 - o LICK040.8GE Lick Creek, 100 yds d/s dirt road off John Graham Rd.

- o LICK045.2GE Lick Creek, 100 yds u/s Wesley Chapel Rd.
- LICK047.2GE Lick Creek, on Crumley Rd., off SR172
- PCAMP000.5GE Puncheon Camp Creek, off route 70 thru field road, 50 yds u/s culvert
- HUC-12 06010108_0705:
 - LICK001.0GE Lick Creek, on Warrensburg/SR340, at Fish Hatchery Rd., Cooper bridge
 - LICK003.8GE Lick Creek, u/s McDonald Rd. (SR348) at Beulah, 50 yds u/s Brown Springs Rd.
 - LICK006.5GE Lick Creek, 100 yds u/s Smelcer Rd.
 - o LICK011.9GE Lick Creek, at Bible Chapel Rd.
 - LICK0015.5GE Lick Creek, 70 yds u/s Green Rd.
 - LICK020.5GE Lick Creek, at Pottertown Rd.
 - MINK001.0GE Mink Creek, u/s McDonald Rd. (SR348) at Bible Chapel, 100 yds u/s Brown Springs Rd.
 - POTTE000.3GE Potter Creek, on Sapp Rd., off Concord Rd., west of Thula

The location of these monitoring stations is shown in Figures 5 thru 9. Water quality monitoring results for these stations are tabulated in Appendix B. Examination of the data shows exceedances of the 487 CFU/100 mL (Tier II) and 941 CFU/100 mL (non-Tier II) maximum E. coli standard at many monitoring stations. Water quality monitoring results for those stations with 10% or more of samples exceeding water quality maximum criteria are summarized in Table 3.

Several of the water quality monitoring stations (Table 3 and Appendix B) have at least one E. coli sample value reported as >2419. In addition, at three of these sites, the maximum E. coli sample value is >2419. For the purpose of calculating summary data statistics, TMDLs, Waste Load Allocations (WLAs), and Load Allocations (LAs), these data values are treated as (equal to) 2419. Therefore, the calculated results are considered to be estimates. Future E. coli sample analyses at these sites should follow established protocol. See Section 9.4.

There were not enough data to calculate the geometric mean at each monitoring station. Whenever a minimum of 5 samples was collected at a given monitoring station over a period of not more than 30 consecutive days, the geometric mean was calculated.

Note that several waterbodies have been divided into multiple segments and are represented by multiple water quality monitoring stations. The three impaired segments of Nolichucky River are represented by two water quality monitoring stations. The monitoring station at mile 5.3 is located in segment 001-1000 (from the mouth to Flat Creek). There are no monitoring stations located in segment 001-2000 (from Flat Creek to Bent Creek). The monitoring station at mile 38.5/39.3 is located in segment 005-2000 (from Evans Island to Pigeon Creek).

The two impaired segments of Big Limestone Creek are represented by four water quality monitoring stations. The monitoring stations at miles 0.5 and 2.9 are located in segment 030-1000 (from the mouth to an unnamed tributary near Limestone). The monitoring stations at miles 4.0 and 7.7 are located in segment 030-2000 (from the unnamed tributary to the headwaters).

The two impaired segments of Little Limestone Creek are represented by three water quality monitoring stations. The monitoring stations at miles 0.1 and 7.0 are located in segment 510-1000 (from the mouth to Brown Creek at Telford). The monitoring station at mile 7.7 is located in segment 510-2000 (from Brown Creek to the headwaters).

The two impaired segments of Sinking Creek are represented by four water quality monitoring stations. The monitoring stations at miles 0.2, 0.5, and 3.0 are located in segment 064-1000 (from the mouth to unnamed tributary northwest of Afton). The monitoring station at mile 4.5 is located in segment 064-2000 (from the unnamed tributary to the headwaters).

The nine impaired segments of Lick Creek are represented by thirteen water quality monitoring stations. The monitoring station at mile 1.0 is located in segment 035-1000 (from the mouth to Highway 348). The monitoring station at mile 3.8 is located in segment 035-2000 (from Highway 348 to Black Creek). The monitoring stations at miles 6.5 and 11.9 are located in segment 035-3000 (from Black Creek to Skipper Creek). The monitoring station at Mile 15.5 is located in segment 035-4000 (from Skipper Creek to Mud Creek). The monitoring stations at miles 20.5 and 24.2 are located in segment 035-5000 (from Mud Creek to Highway 70). The monitoring stations at miles 33.6 and 40.8 are located in segment 035-6000 (from Highway 70 to Grassy Creek). The monitoring stations at miles 45.2 and 47.2 are located in segment 035-7000 (from Grassy Creek to Horse Fork). The monitoring station at mile 52.3 is located in segment 035-8000 (from Horse Fork to Interstate 81). The monitoring station at mile 61.0 is located in segment 035-9000 (from Interstate 81 to the headwaters).

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 17 of 52

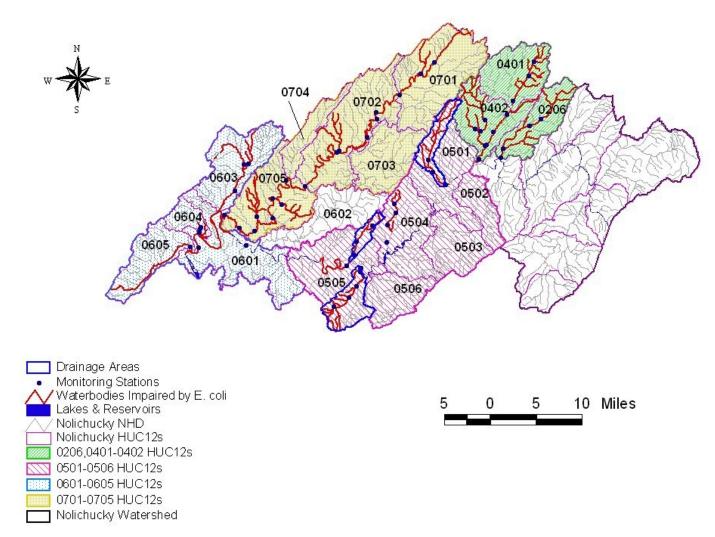


Figure 5. Overview of Water Quality Monitoring Stations in the Nolichucky River Watershed

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 18 of 52

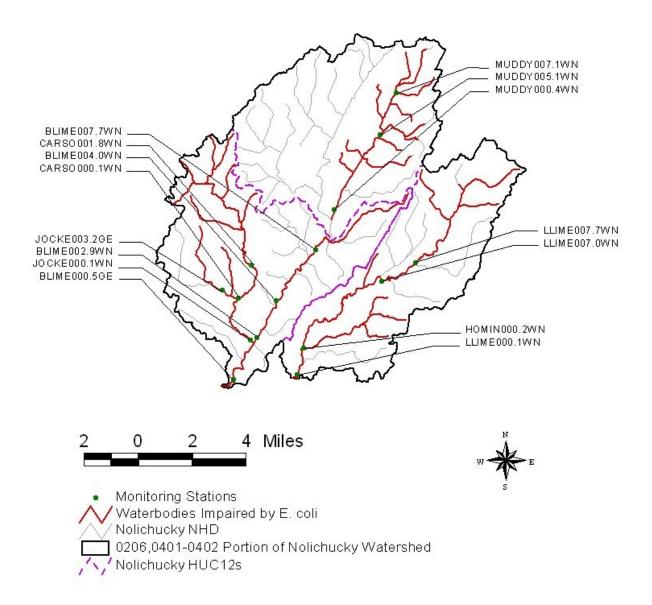


Figure 6. Water Quality Monitoring Stations in the Big and Little Limestone Creek Subwatersheds (HUC12s 0206, 0401, 0402)

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 19 of 52

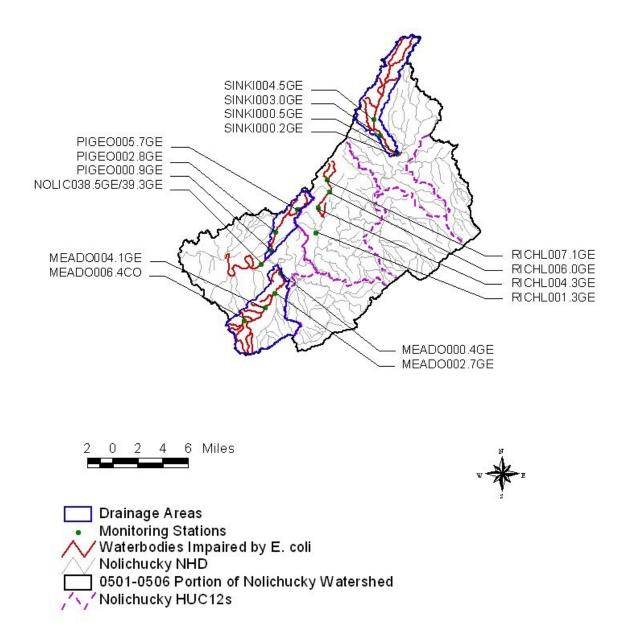
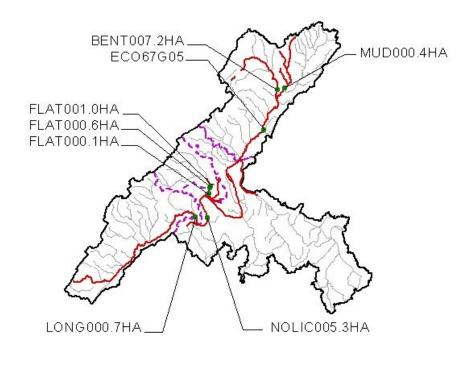



Figure 7. Water Quality Monitoring Stations in the Sinking, Meadow, Pigeon, and Richland Creek Subwatersheds (HUC12s 0501 - 506)

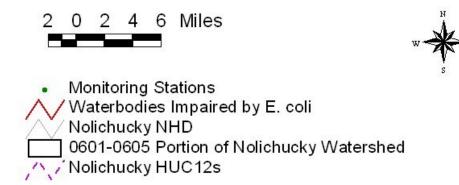


Figure 8. Water Quality Monitoring Stations in the Bent, Flat, and Long Creek Subwatersheds (HUC12s 0601 - 0605)

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 21 of 52

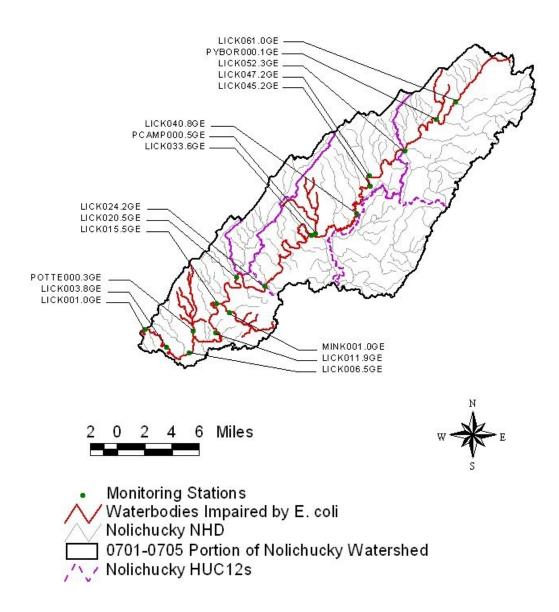


Figure 9. Water Quality Monitoring Stations in the Lick Creek Subwatershed (HUC12s 0701 - 0705)

Manitaring		E. Coli (Max WQ Target = 941 CFU/100 mL)**				
Monitoring Station	Date Range		Min.	Avg.	Max.	No. Exceed.
		Data Pts.	[CFU/100 ml]	[CFU/100 ml]	[CFU/100 ml]	WQ Max. Target
BENT007.2HA	2001 – 2005	23	43	1,186	>2,419	13
BLIME000.5GE	2000 – 2005	27	61	1,044	38,694	21
BLIME002.9WN	2000 – 2001	13	127	573	37,188	8
BLIME004.0WN	2000 – 2005	8	326	901	1,600	3
BLIME007.7WN	2000 – 2001	12	228	1,364	2,419	7
CARSO000.1WN	2000 – 2005	21	816	3,672	13,130	20
CARSO001.8WN	2000 – 2001	12	770	1,895	3,270	10
ECO67G05	1998 – 2005	15	140	419	816	7
FLAT000.6HA	2001 – 2005	23	179	995	2,419	7
HOMIN000.2WN	2005	6	921	1,727	2,500	5
JOCKE000.1WN	2000 – 2005	21	10	1,244	3,990	11
JOCKE003.2GE	2000 – 2001	13	148	1,698	6,630	9
LICK006.5GE	2000 – 2005	7	300	511	1,350	2
LICK011.9GE	2000 – 2001	15	71	1,202	11,300	5
LICK015.5GE	2000 – 2005	7	200	1,409	6,970	2
LICK020.5GE	2000 – 2001	15	88	1,210	6,270	4
LICK024.2GE	2000 – 2005	7	200	549	1,300	1
LICK033.6GE	2000 – 2005	21	20	594	3,310	5
LICK045.2GE	2000 – 2005	7	300	838	2,330	2
LICK047.2GE	2000 – 2001	15	40	928	5,380	4
LICK052.3GE	2000 – 2005	22	32	1,395	16,160	4
LICK061.0GE	2000 – 2005	21	75	1,386	11,530	9
LLIME000.1WN	2005	6	185	868	1,733	2
LLIME007.0WN	2003 – 2005	9	78	1,045	2,419	5
LLIME007.7WN	2005	3	770	38,813	92,080	2
LONG000.7HA	2001 – 2005	11	68	573	>2,419	1

Table 3 Summary of TDEC Water Quality Monitoring Data

Monitoring		E. Coli (Max WQ Target = 941 CFU/100 mL)**							
Monitoring Station	Date Range	Data Dta	Min.	Avg.	Max.	No. Exceed.			
		Data Pts.	[CFU/100 ml]	[CFU/100 ml]	[CFU/100 ml]	WQ Max. Target			
MEADO000.4GE	1999 – 2005	18	435	1,151	>2,419	17			
MEADO002.7GE	1999 – 2005	17	345	5,936	46,110	16			
MEADO004.1GE	1999 – 2005	17	313	1,169	2,690	15			
MEADO006.4CO	1999 – 2005	17	21	1,242	5,860	11			
MINK001.0GE	2000 – 2005	18	166	2,358	9,330	13			
MUD000.4HA	2005	12	7	405	2,419	2			
MUDDY000.4WN	2000 – 2005	17	285	1,854	5,650	11			
MUDDY005.1WN	2000 – 2001	11	238	2,555	11,300	7			
MUDDY007.1WN	2000 – 2001	12	345	3,966	30,760	8			
NOLIC005.3HA	2001 – 2005	17	1	159	1,203	2			
PCAMP000.5GE	2000 – 2005	4	201	727	1,480	1			
PIGEO000.9GE	1999 – 2005	16	121	1,109	4,640	4			
PIGEO002.8GE	1999 – 2005	17	365	1,924	3,310	14			
PIGEO005.7GE	1999 – 2005	17	101	973	2,419	8			
POTTE000.3GE	2000 – 2005	17	10	5,587	45,690	11			
PYBOR000.1GE	2000 – 2005	17	12	1,564	7,170	7			
RICHL001.3GE	2000 – 2005	25	115	646	2,419	12			
RICHL004.3GE	2000 – 2001	15	205	814	2,419	6			
RICHL006.0GE	2005	6	866	25,738	129,970	5			
RICHL007.1GE	2000 – 2001	15	62	442	1,203	2			
SINKI000.2GE	2001 – 2005	6	86	862	1,986	2			
SINKI003.0GE	2000 – 2005	18	649	1,811	4,190	13			
SINKI004.5GE	2000 – 2001	15	66	799	2,130	5			

Table 3 (cont'd) Summary of TDEC Water Quality Monitoring Data

Maximum water quality target is 487 CFU/100 mL for Tier II waterbodies and 941 CFU/100 mL for other waterbodies. Tier II waterbodies are italicized.

7.0 SOURCE ASSESSMENT

An important part of TMDL analysis is the identification of individual sources, or source categories of pollutants in the watershed that affect pathogen loading and the amount of loading contributed by each of these sources.

Under the Clean Water Act, sources are classified as either point or nonpoint sources. Under 40 CFR §122.2, a point source is defined as a discernable, confined, and discrete conveyance from which pollutants are or may be discharged to surface waters. The National Pollutant Discharge Elimination System (NPDES) program regulates point source discharges. Point sources can be described by three broad categories: 1) NPDES regulated municipal and industrial wastewater treatment facilities (WWTFs); 2) NPDES regulated industrial and municipal storm water discharges; and 3) NPDES regulated Concentrated Animal Feeding Operations (CAFOs). A TMDL must provide Waste Load Allocations (WLAs) for all NPDES regulated point sources. Nonpoint sources are diffuse sources that cannot be identified as entering a waterbody through a discrete conveyance at a single location. For the purposes of this TMDL, all sources of pollutant loading not regulated by NPDES permits are considered nonpoint sources. The TMDL must provide a Load Allocation (LA) for these sources.

- 7.1 Point Sources
- 7.1.1 NPDES Regulated Municipal and Industrial Wastewater Treatment Facilities

Both treated and untreated sanitary wastewater contain coliform bacteria. There are 16 WWTFs in the Nolichucky River Watershed that have NPDES permits authorizing the discharge of treated sanitary wastewater. Eleven of these facilities are located in impaired subwatersheds or drainage areas (see Table 4 & Figure 10). The permit limits for discharges from these WWTFs are in accordance with the coliform criteria specified in Tennessee Water Quality Standards for the protection of the recreation use classification.

Non-permitted point sources of (potential) E. coli contamination of surface waters associated with STP collection systems include leaking collection systems and sanitary sewer overflows (SSOs).

Note: As stated in Section 5.0, the current coliform criteria are expressed in terms of E. coli concentration, whereas previous criteria were expressed in terms of fecal coliform and E. coli concentration. Due to differences in permit issuance dates, some permits still have fecal coliform limits instead of E. coli. As permits are reissued, limits for fecal coliform will be replaced by E. coli limits.

NPDES Dormit No	Facility	Design Flow	Receiving Stream
Permit No.		[MGD]	
TN0021229	Denzil Bowman (Greeneville) WWTP	7.0	Nolichucky River at Mile 47.5
TN0021547	Jonesborough STP	0.5	Little Limestone at Mile 12.5
TN0024406	Davy Crockett High School	0.039	Little Limestone at Mile 8.8
TN0040673	Nolichucky Elementary School	0.018	Meadow Creek at Mile 2.9
TN0054844	Plus Mark Inc.*	0.024	Sinking Creek at Mile 2.8
TN0054887	Centerview Elementary School	0.007	Slate Creek
TN0056332	John M. Reed Home, Inc.	0.005	Big Limestone at Mile 3.8
TN0058254	McDonald Elementary School	0.015	War Branch to Lick Creek
TN0058343	Ottway Elementary School	0.009	Lick Creek at Mile 41.1
TN0059366	Lick Creek Valley (Mosheim) WWTP	0.975	Lick Creek at Mile 23.3
TN0063932	Baileyton STP	0.1	Lick Creek at Mile 49.2

Table 4 NPDES Permitted WWTFs in Impaired Subwatersheds or Drainage Areas

* Long term average flow is used for industrial facilities.

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 26 of 52

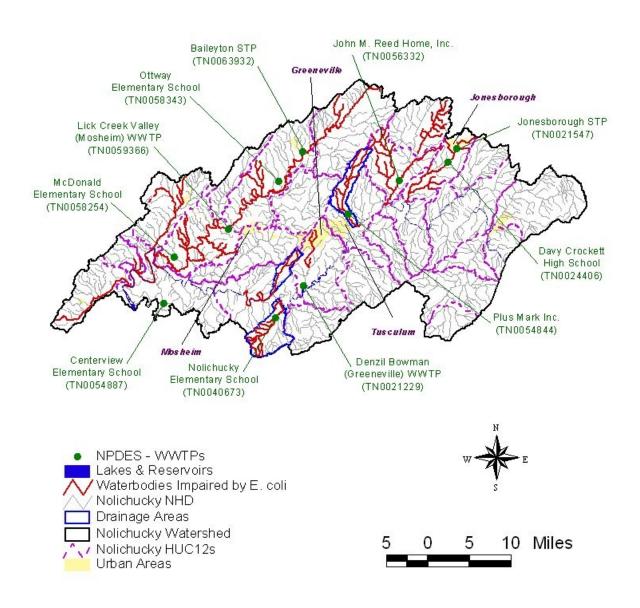


Figure 10. NPDES Regulated Point Sources in and near Impaired Subwatersheds and Drainage Areas of the Nolichucky River Watershed.

7.1.2 NPDES Regulated Municipal Separate Storm Sewer Systems (MS4s)

Municipal Separate Storm Sewer Systems (MS4s) are considered to be point sources of E. coli. Discharges from MS4s occur in response to storm events through road drainage systems, curb and gutter systems, ditches, and storm drains. Phase I of the EPA storm water program requires large and medium MS4s to obtain NPDES storm water permits. Large and medium MS4s are those located in incorporated places or counties serving populations greater than 100,000 people. At present, there are no MS4s of this size in the Nolichucky River Watershed.

As of March 2003, regulated small MS4s in Tennessee must also obtain NPDES permits in accordance with the Phase II storm water program. A small MS4 is designated as regulated if: a) it is located within the boundaries of a defined urbanized area that has a residential population of at least 50,000 people and an overall population density of 1,000 people per square mile; b) it is located outside of an urbanized area but within a jurisdiction with a population of at least 10,000 people, a population density of 1,000 people per square mile, and has the potential to cause an adverse impact on water quality; or c) it is located outside of an urbanized area but contributes substantially to the pollutant loadings of a physically interconnected MS4 regulated by the NPDES storm water program. Most regulated small MS4s in Tennessee obtain coverage under the NPDES General Permit for Discharges from Small Municipal Separate Storm Sewer Systems (TDEC, 2003). Greeneville, Jonesborough, Morristown, Hamblen County, Hawkins County, and Washington County are covered under Phase II of the NPDES Storm Water Program.

The Tennessee Department of Transportation (TDOT) has been issued an individual MS4 permit that authorizes discharges of storm water runoff from State roads and interstate highway right-of-ways that TDOT owns or maintains, discharges of storm water runoff from TDOT owned or operated facilities, and certain specified non-storm water discharges. This permit covers all eligible TDOT discharges statewide, including those located outside of urbanized areas.

Information regarding storm water permitting in Tennessee may be obtained from the Tennessee Department of Environment and Conservation (TDEC) website at:

http://www.state.tn.us/environment/wpc/stormh2o/.

7.1.3 NPDES Concentrated Animal Feeding Operations (CAFOs)

Animal feeding operations (AFOs) are agricultural enterprises where animals are kept and raised in confined situations. AFOs congregate animals, feed, manure and urine, dead animals, and production operations on a small land area. Feed is brought to the animals rather than the animals grazing or otherwise seeking feed in pastures, fields, or on rangeland (USEPA, 2002a). Concentrated Animal Feeding Operations (CAFOs) are AFOs that meet certain criteria with respect to animal type, number of animals, and type of manure management system. CAFOs are considered to be potential point sources of pathogen loading and are required to obtain an NPDES permit. Most CAFOs in Tennessee obtain coverage under TNA000000, Class II Concentrated Animal Feeding Operationg Operation General Permit, while larger, Class I CAFOs are required to obtain an individual NPDES permit.

As of May 11, 2005, there are seven Class II CAFOs with coverage under the general NPDES permit and three Class I CAFOs with an individual permit located in the Nolichucky River Watershed. There are also one Class I CAFO and one Class II CAFO with applications pending. Nine of these facilities are located in impaired subwatersheds or drainage areas (see Table 5 & Figure 11).

7.2 Nonpoint Sources

Nonpoint sources of coliform bacteria are diffuse sources that cannot be identified as entering a waterbody through a discrete conveyance at a single location. These sources generally, but not always, involve accumulation of coliform bacteria on land surfaces and wash off as a result of storm events. Nonpoint sources of E. coli loading are primarily associated with agricultural and urban land uses. The majority of waterbodies identified on the Final 2006 303(d) list as impaired due to E. coli are attributed to nonpoint agricultural or urban sources.

NPDES Permit No.	Permittee	HUC-12 Subwatershed (06010108) or Drainage Area
TN0078344*	Ray Farms, L.P.	0603
TN0078611	Jack D. Renner	0601
TN0078662	McNabb Farm	0601
TNA000009	A & B Poultry	0701
TNA000026	Lloyd E. Davis	0704
TNA000027*	TNT Poultry	0701
TNA000028	Meadowview Valley Poultry	0701
TNA000084	Woodlawn Gelbvieh	0702
TNA000098	Birdwell Enterprise	0505
TNA000108	B & D Farms	0701

Table 5 NPDES Permitted CAFOs in Impaired Subwatersheds or Drainage Areas

* Permit application pending

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 29 of 52

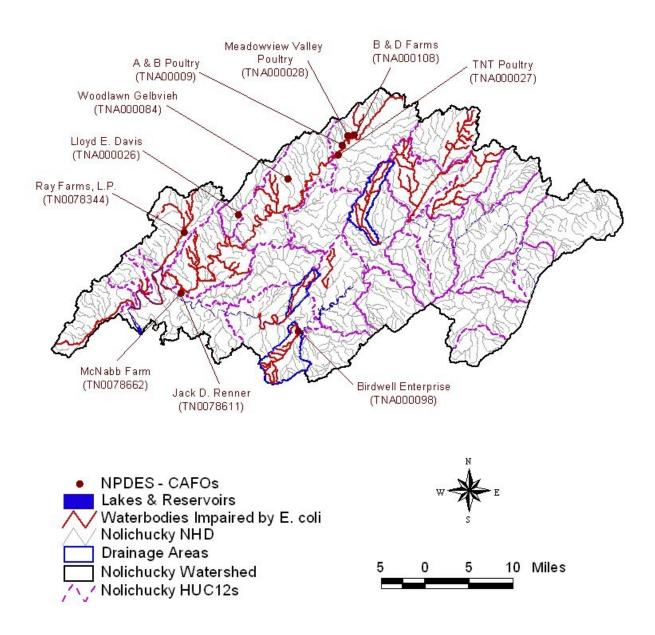


Figure 11. Class I and II CAFOs in and near Impaired Subwatersheds and Drainage Areas of the Nolichucky River Watershed.

7.2.1 Wildlife

Wildlife deposit coliform bacteria, with their feces, onto land surfaces where it can be transported during storm events to nearby streams. The overall deer density for Tennessee was estimated by the Tennessee Wildlife Resources Agency (TWRA) to be 23 animals per square mile.

7.2.2 Agricultural Animals

Agricultural activities can be a significant source of coliform bacteria loading to surface waters. The activities of greatest concern are typically those associated with livestock operations:

- Agricultural livestock grazing in pastures deposit manure containing coliform bacteria onto land surfaces. This material accumulates during periods of dry weather and is available for washoff and transport to surface waters during storm events. The number of animals in pasture and the time spent grazing are important factors in determining the loading contribution.
- Processed agricultural manure from confined feeding operations is often applied to land surfaces and can provide a significant source of coliform bacteria loading. Guidance for issues relating to manure application is available through the University of Tennessee Agricultural Extension Service and the Natural Resources Conservation Service (NRCS).
- Agricultural livestock and other unconfined animals often have direct access to waterbodies and can provide a concentrated source of coliform bacteria loading directly to a stream.

Data sources related to livestock operations include the 2002 Census of Agriculture. Livestock data for counties containing E. coli-impaired watersheds are summarized in Table 6.

7.2.3 Failing Septic Systems

Some coliform loading in the Nolichucky River Watershed can be attributed to failure of septic systems and illicit discharges of raw sewage. Estimates from 1997 county census data of people in the Nolichucky River Watershed utilizing septic systems were compiled using the WCS and are summarized in Table 7. WCS is an Arcview geographic information system (GIS) based program developed by USEPA Region IV to facilitate watershed characterization and TMDL development. In middle and eastern Tennessee, it is estimated that there are approximately 2.37 people per household on septic systems, some of which can be reasonably assumed to be failing. As with livestock in streams, discharges of raw sewage provide a concentrated source of coliform bacteria directly to waterbodies.

7.2.4 Urban Development

Nonpoint source loading of coliform bacteria from urban land use areas is attributable to multiple sources. These include: stormwater runoff, illicit discharges of sanitary waste, runoff from improper disposal of waste materials, leaking septic systems, and domestic animals. Impervious surfaces in urban areas allow runoff to be conveyed to streams quickly, without interaction with soils and groundwater. Urban land use area in impaired subwatersheds in the Nolichucky River Watershed ranges from 0.2% to 9.9%. Land use for the Nolichucky impaired drainage areas is summarized in Figures 12 through 17 and tabulated in Appendix A.

	Livestock Population (2002 Census of Agriculture)								
County	Beef Milk		Po	ultry	Hogs	Sheep	Horse		
	Cow	Cow	Layers	Broilers	riogs	опсер	110136		
Cocke	9,442	1,145	289	232,063	121	183	822		
Greene	38,445	5,149	2,207	1,119,358	600	717	3,851		
Hamblen	9,054	857	430	575,651	956	127	840		
Hawkins	20,337	443	1,658	280,310	296	354	2,259		
Jefferson	18,634	1,546	1,085	783,172	293	799	2,080		
Unicoi	D	0	122	D	36	0	228		
Washington	24,068	4,627	557	D	150	1,174	2,929		

 Table 6
 Livestock Distribution in the Nolichucky River Watershed

* In keeping with the provisions of Title 7 of the United States Code, no data are published in the 2002 Census of Agriculture that would disclose information about the operations of an individual farm or ranch. Any tabulated item that identifies data reported by a respondent or allows a respondent's data to be accurately estimated or derived is suppressed and coded with a 'D' (USDA, 2004).

HUC-12 Subwatershed (06010108) or Drainage Area	Population on Septic Systems
0206 (Little Limestone Creek)	8,797
0401 (Muddy Fork)	11,266
0402 (Big Limestone Creek)	8,297
Sinking Creek DA	1,277
0504 (Richland Creek)	4,202
Meadow Creek DA	1,582
Pigeon Creek DA	528
0601 (Nolichucky R. – mouth)	7,532
0603 (Bent Creek)	11,744
0604 (Flat Creek)	3,718
0605 (Long Creek)	5,930
0701 (Lick Creek – headwaters)	7,756
0702 (Lick Creek – middle)	6,689
0705 (Lick Creek – mouth)	5,222

Table 7 Population on Septic Systems in the Nolichucky River Watershed

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 33 of 52

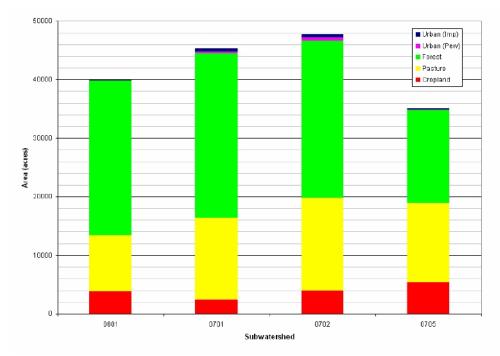


Figure 12. Land Use Area of Nolichucky E. coli-Impaired Subwatersheds – Drainage Areas Greater Than 30,000 Acres

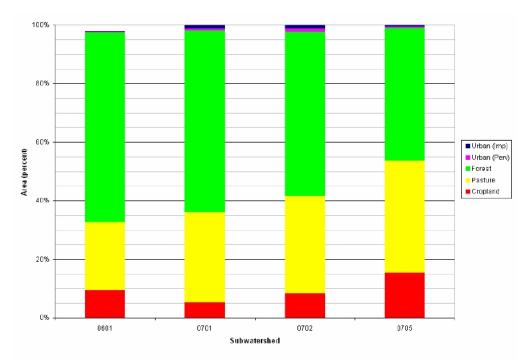


Figure 13. Land Use Percent of the Nolichucky E. coli-Impaired Subwatersheds – Drainage Areas Greater Than 30,000 Acres

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 34 of 52

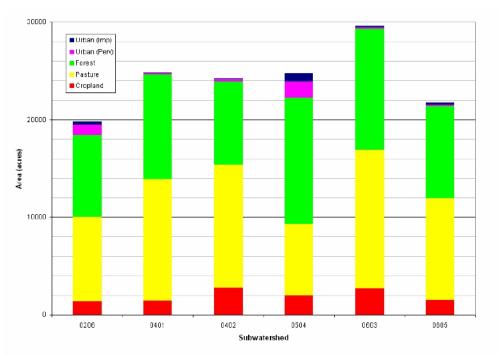


Figure 14. Land Use Area of Nolichucky E. coli-Impaired Subwatersheds – Drainage Areas Between 15,000 and 30,000 Acres

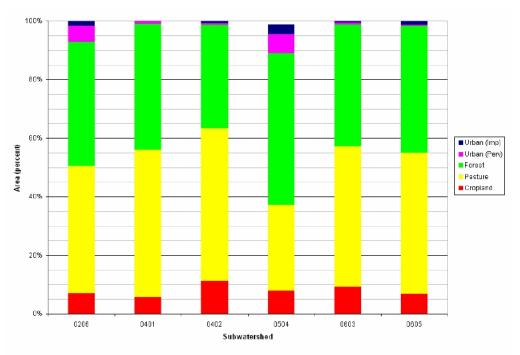


Figure 15. Land Use Percent of the Nolichucky E. coli-Impaired Subwatersheds – Drainage Areas Between 15,000 and 30,000 Acres

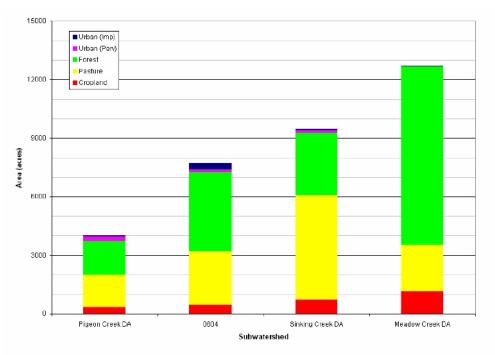


Figure 16. Land Use Area of Nolichucky E. coli-Impaired Subwatersheds – Drainage Areas Less Than 15,000 Acres

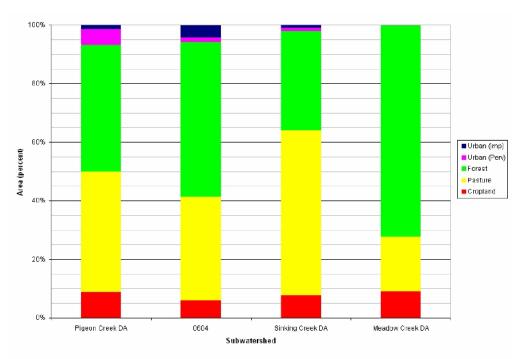


Figure 17. Land Use Percent of the Nolichucky E. coli-Impaired Subwatersheds – Drainage Areas Less Than 15,000 Acres

8.0 DEVELOPMENT OF TOTAL MAXIMUM DAILY LOADS

The Total Maximum Daily Load (TMDL) process quantifies the amount of a pollutant that can be assimilated in a waterbody, identifies the sources of the pollutant, and recommends regulatory or other actions to be taken to achieve compliance with applicable water quality standards based on the relationship between pollution sources and in-stream water quality conditions. A TMDL can be expressed as the sum of all point source loads (Waste Load Allocations), non-point source loads (Load Allocations), and an appropriate margin of safety (MOS) that takes into account any uncertainty concerning the relationship between effluent limitations and water quality:

 $\mathsf{TMDL} = \Sigma \mathsf{WLAs} + \Sigma \mathsf{LAs} + \mathsf{MOS}$

The objective of a TMDL is to allocate loads among all of the known pollutant sources throughout a watershed so that appropriate control measures can be implemented and water quality standards achieved. 40 CFR §130.2 (i) states that TMDLs can be expressed in terms of mass per time, toxicity, or <u>other appropriate measure</u>.

This document describes TMDL, Waste Load Allocation (WLA), and Load Allocation (LA) development for waterbodies identified as impaired due to E. coli on the Final 2006 303(d) list.

8.1 Expression of TMDLs, WLAs, & LAs

In this document, TMDLs are expressed as a function of mean daily flow (daily loading function). In order to facilitate implementation, the corresponding percent reduction required to decrease E. coli concentrations to TMDL target levels is also expressed. WLAs & LAs for precipitation-induced loading sources are also expressed as daily loading functions and required percent reductions in E. coli loading. Allocations for loading that is independent of precipitation (WLAs for WWTFs) are expressed as CFU/day.

8.2 Area Basis for TMDL Analysis

The primary area unit of analysis for TMDL development was the HUC-12 subwatershed containing one or more waterbodies assessed as impaired due to E. coli (as documented on the 2006 303(d) List). In some cases, however, TMDLs were developed for an impaired waterbody drainage area only. Determination of the appropriate area to use for analysis (see Table 8) was based on a careful consideration of a number of relevant factors, including: 1) location of impaired waterbodies in the HUC-12 subwatershed; 2) land use type and distribution; 3) water quality monitoring data; and 4) the assessment status of other waterbodies in the HUC-12 subwatershed.

2
2
2
2
2
2
2
2
2
2
2

Table 8 Determination of Analysis Areas for TMDL Development

Note: HUC-12 = HUC-12 Subwatershed DA = Waterbody Drainage Area

8.3 TMDL Analysis Methodology

TMDLs for the Nolichucky River Watershed were developed using load duration curves for analysis of impaired HUC-12 subwatersheds or specific waterbody drainage areas. A load duration curve (LDC) is a cumulative frequency graph that illustrates existing water quality conditions (as represented by loads calculated from monitoring data), how these conditions compare to desired targets, and the portion of the waterbody flow regime represented by these existing loads. Load duration curves are considered to be well suited for analysis of periodic monitoring data collected by grab sample. LDCs were developed at monitoring site locations in impaired waterbodies and a daily loading function and an overall load reduction were calculated to meet E. coli targets according to the methods described in Appendix C.

8.4 Critical Conditions and Seasonal Variation

The critical condition for non-point source E. coli loading is an extended dry period followed by a rainfall runoff event. During the dry weather period, E. coli bacteria builds up on the land surface, and is washed off by rainfall. The critical condition for point source loading occurs during periods of low streamflow when dilution is minimized. Both conditions are represented in the TMDL analysis.

The ten-year period from October 1, 1994 to September 30, 2004 was used to simulate flow. This 10-year period contained a range of hydrologic conditions that included both low and high streamflows. Critical conditions are accounted for in the load duration curve analysis by using the entire period of flow and water quality data available for the impaired waterbodies. In all subwatersheds, water quality data have been collected during most flow ranges. Based on the location of the water quality exceedances on the load duration curves, no one delivery mode for E. coli appears to be dominant (see Section 9.3 and Table 9).

Seasonal variation was incorporated in the load duration curves by using the entire simulation period and all water quality data collected at the monitoring stations. The water quality data were collected during all seasons.

8.5 Margin of Safety

There are two methods for incorporating MOS in TMDL analysis: a) implicitly incorporate the MOS using conservative model assumptions; or b) explicitly specify a portion of the TMDL as the MOS and use the remainder for allocations. For development of pathogen TMDLs in the Nolichucky River Watershed, an explicit MOS, equal to 10% of the E. coli water quality targets (ref.: Section 5.0), was utilized for determination of WLAs and LAs:

Instantaneous Maximum (Tier II):	MOS = 49 CFU/100 ml
Instantaneous Maximum (non-Tier II):	MOS = 94 CFU/100 ml
30-Day Geometric Mean:	MOS = 13 CFU/100 ml

8.6 Determination of TMDLs

E. coli daily loading functions and percent load reductions were calculated for impaired segments in the Nolichucky River Watershed using Load Duration Curves to evaluate compliance with the single maximum target concentrations according to the procedure in Appendix C. These TMDL loading functions for impaired segments and subsequent subwatersheds are shown in Table 9. When sufficient data were available, percent load reductions (only) were also calculated to achieve the 30-day geometric mean target loading. Both instream load reductions (where applicable) for a particular waterbody were compared and the largest required load reduction was selected for TMDL implementation. In cases where the geometric mean could not be calculated, it is assumed that achieving the percent load reduction based on the single sample maximum target concentrations should result in attainment of the geometric mean criteria.

8.7 Determination of WLAs & LAs

WLAs for MS4s and LAs for precipitation induced sources of E. coli loading were determined according to the procedures in Appendix C. These allocations represent the allowable loads and subsequent percent load reductions required to achieve instream targets <u>after application of the explicit MOS</u>. WLAs for existing WWTFs are equal to their existing NPDES permit limits. Since WWTF permit limits require that E. coli concentrations must comply with water quality criteria (TMDL targets) at the point of discharge and recognition that loading from these facilities are generally small in comparison to other loading sources, further reductions were not considered to be warranted. WLAs for CAFOs and LAs for "other direct sources" (non-precipitation induced) are equal to zero. WLAs, & LAs are summarized in Table 9.

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 40 of 52

Table 9 TMDLs, WLAs, & LAs for Impaired Subwatersheds and Drainage Areas in the Nolichucky River Watershed

							WLAs		
HUC-12 Subwatershed (06010108_) or Drainage Area (DA)	Impaired Waterbody Name	Impaired Waterbody ID	TMDL	MOS	WWTFs ^a	Leaking Collection Systems °	CAFOs	MS4s ^d	LAs
(DA)			[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day/acre]	[CFU/day/acre]
	Little Limestone Creek	TN06010108510 - 1000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	1.920 x 10 ^{10,b}	NA	NA	2.122 x 10 ⁶ * Q – 1.968 x 10 ⁶	2.122 x 10 ⁶ * Q – 1.968 x 10 ⁶
0206	Little Limestone Creek	TN06010108510 - 2000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	1.920 x 10 ^{10,b}	0	NA	1.046 x 10 ⁶ * Q − 9.698 x 10 ⁵	1.046 x 10 ⁶ * Q − 9.698 x 10 ⁵
	Hominy Branch	TN06010108510 - 0400	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	8.434 x 10 ⁶ * Q	8.434 x 10 ⁶ * Q
0401	Muddy Fork	TN06010108030 - 0430	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	2.042 x 10 ⁶ * Q	2.042 x 10 ⁶ * Q
	Big Limestone Creek	TN06010108030 - 1000	1.20 x 10 ¹⁰ * Q	1.20 x 10 ⁹ * Q	1.781 x 10 ⁸	NA	NA	2.246 x 10 ⁵ * Q − 3.704 x 10 ³	2.246 x 10 ⁵ * Q – 3.704 x 10 ³
0402	Big Limestone Creek	TN06010108030 - 2000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	1.781 x 10 ⁸	NA	NA	6.142 x 10 ⁵ * Q − 5.285 x 10 ³	6.142 x 10 ⁵ * Q − 5.285 x 10 ³
0.02	Carson Creek	TN06010108030 - 0220	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	3.375 x 10 ⁶ * Q	3.375 x 10 ⁶ * Q
	Jockey Creek	TN06010108030 - 0200	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	1.859 x 10 ⁶ * Q	1.859 x 10 ⁶ * Q
0501 (DA)	Sinking Creek	TN06010108064 - 1000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	8.548 x 10 ⁸	NA	NA	NA	2.186 x 10 ⁶ * Q − 9.026 x 10 ⁴
0301 (DA)	Sinking Creek	TN06010108064 - 2000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	NA	3.252 x 10 ⁶ * Q
0504	Richland Creek	TN06010108102 - 2000	1.20 x 10 ¹⁰ * Q	1.20 x 10 ⁹ * Q	NA	0	NA	1.207 x 10 ⁶ * Q	1.207 x 10 ⁶ * Q
	Nolichucky River	TN06010108005 - 2000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	2.773 x 10 ^{11,b}	NA	0	NA	1.360 x 10 ⁴ * Q − 3.493 x 10 ⁵
0505	Meadow Creek	TN06010108007 - 1000	1.20 x 10 ¹⁰ * Q	1.20 x 10 ⁹ * Q	3.318 x 10 ⁸	NA	0	NA	8.513 x 10 ⁵ * Q – 2.615x 10⁴
	Pigeon Creek	TN06010108033 - 1000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	0	NA	NA	5.169 x 10 ⁶ * Q
0004	Nolichucky River	TN06010108001 – 1000	1.20 x 10 ¹⁰ * Q	1.20 x 10 ⁹ * Q	2.773 x 10 ^{11,b}	NA	0	1.007 x 10 ⁴ * Q − 2.586 x 10 ⁵	1.007 x 10 ⁴ * Q − 2.586 x 10 ⁵
0601	Nolichucky River	TN06010108001 - 2000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	2.773 x 10 ^{11,b}	NA	0	1.021 x 10 ⁴ * Q – 2.621 x 10 ⁵	1.021 x 10 ⁴ * Q − 2.621 x 10 ⁵
0000	Bent Creek	TN06010108042 - 1000	1.20 x 10 ¹⁰ * Q	1.20 x 10 ⁹ * Q	NA	NA	0	3.645 x 10 ⁵ * Q	3.645 x 10 ⁵ * Q
0603	Mud Creek	TN06010108042 - 0600	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	9.675 x 10 ⁶ * Q	9.675 x 10 ⁶ * Q
0604	Flat Creek	TN06010108001 - 0100	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	3.919 x 10 ⁶ * Q	3.919 x 10 ⁶ * Q
0605	Long Creek	TN06010108043 - 1000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	9.509 x 10 ⁵ * Q	9.509 x 10 ⁵ * Q

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 41 of 52

							WLAs		
HUC-12 Subwatershed (06010108_) or Drainage Area (DA)	Impaired Waterbody Name	Impaired Waterbody ID	TMDL	MOS	WWTFs ^a	Leaking Collection Systems	CAFOs	MS4s °	LAs
(DA)			[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day/acre]	[CFU/day/acre]
	Lick Creek	TN06010108035 - 8000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	0	NA	6.173 x 10 ⁵ * Q
0701	Lick Creek	TN06010108035 – 9000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	NA	2.669 x 10 ⁶ * Q
	Pyborn Creek	TN06010108035 - 1800	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	NA	7.720 x 10 ⁶ * Q
	Lick Creek	TN06010108035 - 6000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	3.882 x 10 ⁹	NA	0	NA	1.920 x 10 ⁵ * Q − 3.601 x 10 ⁴
0702	Lick Creek	TN06010108035 – 7000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	3.562 x 10 ⁹	0	NA	NA	3.332 x 10 ⁵ * Q – 5.733 x 10 ⁴
	Puncheon Camp Creek	TN06010108035 - 0900	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	NA	4.469 x 10 ⁶ * Q
	Lick Creek	TN06010108035 – 1000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	3.889 x 10 ¹⁰	NA	NA	NA	1.251 x 10 ⁵ * Q – 2.350 x 10 ⁵
	Lick Creek	TN06010108035 – 2000	1.20 x 10 ¹⁰ * Q	1.20 x 10 ⁹ * Q	3.889 x 10 ¹⁰	NA	NA	NA	6.546 x 10 ⁴ * Q – 2.357 x 10 ⁵
	Lick Creek	TN06010108035 – 3000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	3.861 x 10 ¹⁰	NA	NA	NA	1.268 x 10 ⁵ * Q – 2.365 x 10 ⁵
0705	Lick Creek	TN06010108035 - 4000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	3.861 x 10 ¹⁰	NA	NA	NA	1.376 x 10 ⁵ * Q – 2.567 x 10 ⁵
	Lick Creek	TN06010108035 – 5000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	3.861 x 10 ¹⁰	0	NA	NA	1.385 x 10 ⁵ * Q – 2.583 x 10 ⁵
	Mink Creek	TN06010108035 – 2800	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	0	NA	NA	3.400 x 10 ⁶ * Q
	Potter Creek	TN06010108035 - 0200	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	NA	4.376 x 10 ⁶ * Q

Notes: NA = Not Applicable.

Q = Mean Instream Daily Flow (cfs)

a. WLAs for WWTFs are expressed as E. coli loads (CFU/day). All current and future WWTFs must meet water quality standards at the point of discharge as specified in their NPDES permit; at no time shall concentration be greater than the appropriate E. coli standard (487 CFU/100 mL or 941 CFU/100 mL).

b. The WLA listed is for the subwatershed and is equal to the sum of the WLAs for the individual facilities. WLAs for individual WWTFs correspond to existing E. coli permit limits at facility design flow.

c. Applies to any MS4 discharge loading in the subwatershed.

9.0 IMPLEMENTATION PLAN

The TMDLs, WLAs, and LAs developed in Section 8 are intended to be the first phase of a long-term effort to restore the water quality of impaired waterbodies in the Nolichucky River Watershed through reduction of excessive pathogen loading. Adaptive management methods, within the context of the State's rotating watershed management approach, will be used to modify TMDLs, WLAs, and LAs as required to meet water quality goals.

- 9.1 Point Sources
- 9.1.1 NPDES Regulated Municipal and Industrial Wastewater Treatment Facilities

All present and future discharges from industrial and municipal wastewater treatment facilities are required to be in compliance with the conditions of their NPDES permits at all times, including elimination of bypasses and overflows. In Tennessee, permit limits for treated sanitary wastewater require compliance with coliform water quality standards (ref: Section 5.0) prior to discharge. No additional reduction is required. WLAs for WWTFs are derived from facility design flows and permitted E. coli limits and are expressed as average loads in CFU per day.

9.1.2 NPDES Regulated Municipal Separate Storm Sewer Systems (MS4s)

For existing and future regulated discharges from municipal separate storm sewer systems, WLAs will be implemented through Phase I & II MS4 permits. These permits will require the development and implementation of a Storm Water Management Program (SWMP) that will reduce the discharge of pollutants to the "maximum extent practicable" and not cause or contribute to violations of State water quality standards. The NPDES General Permit for Discharges from Small Municipal Separate Storm Sewer Systems (TDEC, 2003) and the TDOT individual MS4 permit (TNS077585) require SWMPs to include six minimum control measures:

- Public education and outreach on storm water impacts
- Public involvement/participation
- Illicit discharge detection and elimination
- Construction site storm water runoff control
- Post-construction storm water management in new development and re-development
- Pollution prevention/good housekeeping for municipal operations

The permits also contain requirements regarding control of discharges of pollutants of concern into impaired waterbodies, implementation of provisions of approved TMDLs, and descriptions of methods to evaluate whether storm water controls are adequate to meet the requirements of approved TMDLs.

In order to evaluate SWMP effectiveness and demonstrate compliance with specified WLAs, MS4s must develop and implement appropriate monitoring programs. An effective monitoring program could include:

- Effluent monitoring at selected outfalls that are representative of particular land uses or geographical areas that contribute to pollutant loading before and after implementation of pollutant control measures.
- Analytical monitoring of pollutants of concern in receiving waterbodies, both upstream and downstream of MS4 discharges, over an extended period of time.

The Division of Water Pollution Control Johnson City Field Office should be consulted for assistance in the determination of monitoring strategies, locations, frequency, and methods within 12 months after the approval date of this TMDL. Details of the monitoring plan and monitoring data should be included in the annual report required by the MS4 permit.

9.1.3 NPDES Regulated Concentrated Animal Feeding Operations (CAFOs)

WLAs provided to CAFOs will be implemented through NPDES Permit No. TNA000000, General NPDES Permit for Class II Concentrated Animal Feeding Operation or the facility's individual permit. Among the provisions of the general permit are:

- Development and implementation of a site-specific Nutrient Management Plan (NMP) that:
 - Includes best management practices (BMPs) and procedures necessary to implement applicable limitations and standards;
 - Ensures adequate storage of manure, litter, and process wastewater including provisions to ensure proper operation and maintenance of the storage facilities.
 - Ensures proper management of mortalities (dead animals);
 - Ensures diversion of clean water, where appropriate, from production areas;
 - o Identifies protocols for manure, litter, wastewater and soil testing;
 - Establishes protocols for land application of manure, litter, and wastewater;
 - o Identifies required records and record maintenance procedures.

The NMP must submitted to the State for approval and a copy kept on-site.

- Requirements regarding manure, litter, and wastewater land application BMPs.
- Requirements for the design, construction, operation, and maintenance of CAFO liquid waste management systems that are constructed, modified, repaired, or placed into operation after April 13, 2006. The final design plans and specifications for these systems must meet or exceed standards in the NRCS Field Office Technical Guide and other guidelines as accepted by the Departments of Environment and Conservation, or Agriculture.

Provisions of individual CAFO permits are similar. NPDES Permit No. TNA000000, Class II Concentrated Animal Feeding Operation General Permit is available on the TDEC website at http://www.state.tn.us/environment/wpc/programs/cafo/CAFO_GP_04.pdf

9.2 Nonpoint Sources

The Tennessee Department of Environment & Conservation (TDEC) has no direct regulatory authority over most nonpoint source discharges. Reductions of pathogen loading from nonpoint sources (NPS) will be achieved using a phased approach. Voluntary, incentive-based mechanisms will be used to implement NPS management measures in order to assure that measurable reductions in pollutant loadings can be achieved for the targeted impaired waters. Cooperation and active participation by the general public and various industry, business, and environmental groups is critical to successful implementation of TMDLs. There are links to a number of publications and information resources on EPA's Nonpoint Source Pollution web page (http://www.epa.gov/owow/nps/pubs.html) relating to the implementation and evaluation of nonpoint source pollution control measures.

TMDL implementation activities will be accomplished within the framework of Tennessee's Watershed Approach (ref: <u>http://www.state.tn.us/environment/wpc/watershed/</u>). The Watershed Approach is based on a five-year cycle and encompasses planning, monitoring, assessment, TMDLs, WLAs/LAs, and permit issuance. It relies on participation at the federal, state, local and nongovernmental levels to be successful.

Local citizen-led and implemented management measures offer the most efficient and comprehensive avenue for reduction of loading rates from nonpoint sources. An excellent example of stakeholder involvement and action for the implementation of the nonpoint source load allocations (LAs) specified in an approved TMDL is described in Guidance for Development of a Total Maximum Daily Load Implementation Plan for Fecal Coliform Reduction (SCWA, 2004), prepared by the Sinking Creek Watershed Alliance. This document details the cooperative effort of a number of stakeholders and governmental entities to develop an implementation plan for the restoration of water quality in Sinking Creek, near Johnson City, Tennessee. Plan development was funded, in part, through a TDEC 604(b) grant and a Tennessee Department of Agriculture (TDA) Nonpoint source Program 319 grant. The plan is based on land use and pollutant source identification surveys and considers public education & participation, funding resources, in-stream monitoring, best management practices (BMPs), and stakeholder responsibilities. Recommendations for future activities include verification of chemical/biological findings through Bacteria Source Tracking (BST) research, implementation of appropriate BMPs, post implementation monitoring to verify reduction of pollutant loading.

BMPs have been utilized in the Nolichucky River Watershed to reduce the amount of coliform bacteria transported to surface waters from agricultural sources. These BMPs (e.g., animal waste management systems, waste utilization, stream stabilization, fencing, heavy use area treatment, livestock exclusion, etc.) may have contributed to reductions in in-stream concentrations of coliform bacteria in the Nolichucky River Watershed during the TMDL evaluation period. The TDA keeps a database of BMPs implemented in Tennessee. Those listed in the Nolichucky River Watershed are shown in Figure 18. It is recommended that additional information (e.g., livestock access to streams, manure application practices, etc.) be provided and evaluated to better identify and quantify agricultural sources of coliform bacteria loading in order to minimize uncertainty in future modeling efforts.

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 45 of 52

It is further recommended that BMPs be utilized to reduce the amount of coliform bacteria transported to surface waters from agricultural sources. Demonstration sites for various types of BMPs should be established, maintained, and evaluated (performance in source reduction) over a period of at least two years prior to recommendations for utilization for subsequent implementation. E. coli sampling and monitoring are recommended during low-flow (baseflow) and storm periods at sites with and without BMPs and/or before and after implementation of BMPs.

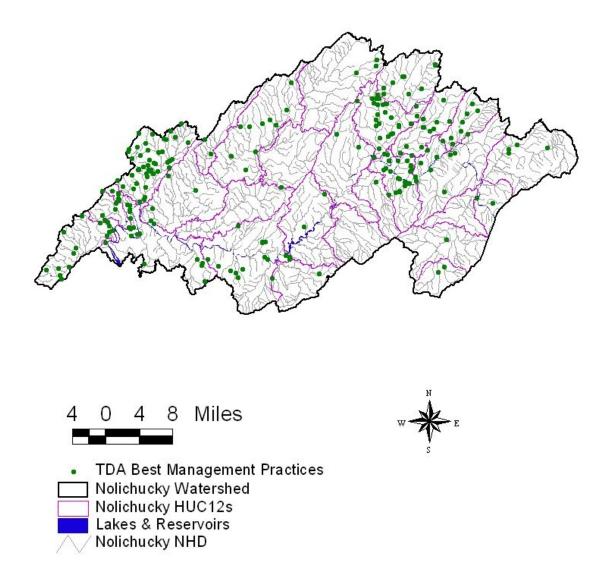


Figure 18. Tennessee Department of Agriculture Best Management Practices located in the Nolichucky River Watershed.

9.3 Application of Load Duration Curves for Implementation Planning

The Load Duration Curve methodology (Appendix C) is a form of water quality analysis and presentation of data that aids in guiding implementation by targeting strategies to appropriate flow conditions. One of the strengths of this method is that it can be used to interpret possible delivery mechanisms of pathogens by differentiating between point and nonpoint problems. The E. coli load duration analysis was utilized for implementation planning. The E. coli load duration curve for each E. coli-impaired subwatershed (Figures C-2 through C-24) was analyzed to determine the frequency with which water quality monitoring data exceed the E. coli target maximum concentration under five flow conditions (low, dry, mid- range, moist, and high). A sample E. coli load duration curve is presented in Figure 19.

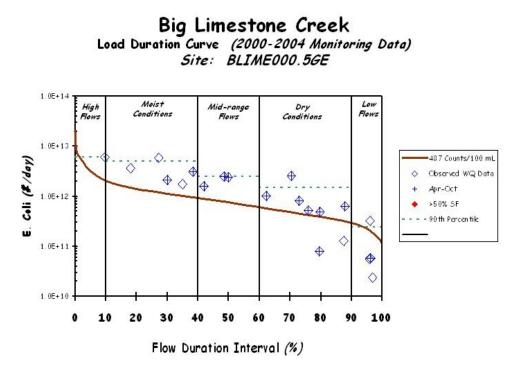


Figure 19. Sample E. Coli Load Duration Curve

Table 10 presents an example of Load Duration analysis statistics for E. coli. Table 11 presents targeted implementation strategies for each source category covering the entire range of flow (Stiles, 2003). Each implementation strategy addresses a range of flow conditions and targets point sources, nonpoint sources, or a combination of each. Results indicate the implementation strategy for all subwatersheds will require BMPs targeting a variety of sources. The implementation strategies listed in Table 11 are a subset of the categories of BMPs and implementation strategies available for application to the E. coli-impaired Nolichucky subwatersheds for reduction of pathogen loading and mitigation of water quality impairment.

See Appendix C for a detailed discussion of the Load Duration Curve Methodology applied to the Nolichucky River Watershed.

			, ann an g	(=:9 =::		on at min	0 0.0)
	Flow Condition % Time Flow Exceeded		High	Moist	Mid-range	Dry	Low
			0-10	10-40	40-60	60-90	90-100
	Big Limestone Creek at Mile 0.5	% Samples > 487 CFU/100 mL	100.0	100.0	100.0	75.0	25.0
		Reduction	65.6	76.5	68.6	66.9	16.1

Table 10 Sample Load Duration Curve Summary (Big Limestone Creek at Mile 0.5)

Flow Condition	High	Moist	Mid-range	Dry	Low
% Time Flow Exceeded	0-10	10-40	40-60	60-90	90-100
Municipal NPDES		L	М	Н	Н
Stormwater Management		Н	Н	Н	
SSO Mitigation	Н	Н	М	L	
Collection System Repair		L	М	Н	Н
Septic System Repair		L	М	Н	М
Livestock Exclusion ¹			М	Н	н
Pasture Management/Land Application of Manure ¹	н	Н	М	L	
Riparian Buffers ¹		Н	Н	Н	

 Table 11
 Example Implementation Strategies

Potential for source area contribution under given hydrologic condition (H: High; M: Medium; L: Low)

Example Best Management Practices (BMPs) for Agricultural Source reduction. Actual BMPs applied may vary.

9.4 Additional Monitoring

Documenting progress in reducing the quantity of pathogens entering the Nolichucky River Watershed is an essential element of the TMDL Implementation Plan. Additional monitoring and assessment activities are recommended to determine whether implementation of TMDLs, WLAs, & LAs in tributaries and upstream reaches will result in achievement of instream water quality targets for E. coli. Future monitoring activities should be representative of all seasons and a full range of flow and meteorological conditions. Monitoring activities should also be adequate to assess water quality using the 30-day geometric mean standard.

Tennessee's watershed management approach specifies a five-year cycle for planning and assessment. Each watershed will be examined (or re-examined) on a rotating basis. Generally, in years two and three of the five-year cycle, water quality data are collected in support of water quality assessment (including TMDL development) and planning activities. Therefore, a watershed TMDL is developed one to two years prior to commencement of the next cycle's monitoring period.

Insufficient monitoring data were available for load duration curve analysis of segments 001-2000 and 005-2000 of the Nolichucky River. Additional monitoring is recommended. For all other impaired waterbodies, additional monitoring and assessment activities are recommended only to verify reduction of pollutant loading as a result of implementation of appropriate BMPs within the subwatershed.

9.5 Source Identification

An important aspect of pathogen load reduction activities is the accurate identification of the actual sources of pollution. In cases where the sources of pathogen impairment are not readily apparent, Microbial Source Tracking (MST) is one approach to determining the sources of fecal pollution and pathogens affecting a waterbody. Those methods that use bacteria as target organisms are also known as Bacterial Source Tracking (BST) methods. This technology is recommended for source identification in pathogen impaired waterbodies.

Bacterial Source Tracking is a collective term used for various emerging biochemical, chemical, and molecular methods that have been developed to distinguish sources of human and non-human fecal pollution in environmental samples (Shah, 2004). In general, these methods rely on genotypic (also known as "genetic fingerprinting"), or phenotypic (relating to the physical characteristics of an organism) distinctions between the bacteria of different sources. Three primary genotypic techniques are available for BST: ribotyping, pulsed field gel electrophoresis (PFGE), and polymerase chain reaction (PCR). Phenotypic techniques generally involve an antibiotic resistance analysis (Hyer, 2004).

The USEPA has published a fact sheet that discusses BST methods and presents examples of BST application to TMDL development and implementation (USEPA, 2002b). Various BST projects and descriptions of the application of BST techniques used to guide implementation of effective BMPs to remove or reduce fecal contamination are presented. The fact sheet can be found on the following EPA website: <u>http://www.epa.gov/owm/mtb/bacsortk.pdf</u>.

A multi-disciplinary group of researchers is developing and testing a series of different microbial assay methods based on real-time PCR to detect fecal bacterial concentrations and host sources in water samples (McKay, 2005). The assays have been used in a study of fecal contamination and have proven useful in identification of areas where cattle represent a significant fecal input and in development of BMPs. It is expected that these types of assays could have broad applications in monitoring fecal impacts from Animal Feeding Operations, as well as from wildlife and human sources. Other BST projects have been conducted or are currently in progress throughout the state of Tennessee, as presented in sessions of the Thirteenth Tennessee Water Resources Symposium (Lawrence, 2003), the Fifteenth Tennessee Water Resources Symposium (Bailey, 2005; Baldwin, 2005; Farmer, 2005), and the Sixteenth Tennessee Water Resources Symposium (Layton, 2006).

9.6 Evaluation of TMDL Implementation Effectiveness

The effectiveness of the TMDL will be assessed within the context of the State's rotating watershed management approach. Watershed monitoring and assessment activities will provide information by which the effectiveness of pathogen loading reduction measures can be evaluated. Additional monitoring data, ground-truthing activities, and bacterial source identification actions are recommended to enable implementation of particular types of BMPs to be directed to specific areas in impaired subwatersheds. This will optimize utilization of resources to achieve maximum reductions in pathogen loading. These TMDLs will be re-evaluated during subsequent watershed cycles and revised as required to assure attainment of applicable water quality standards.

10.0 PUBLIC PARTICIPATION

In accordance with 40 CFR §130.7, the proposed pathogen TMDLs for the Nolichucky River Watershed will be placed on Public Notice for a 35-day period and comments solicited. Steps that will be taken in this regard include:

- 1) Notice of the proposed TMDLs was posted on the Tennessee Department of Environment and Conservation website. The announcement invited public and stakeholder comment and provided a link to a downloadable version of the TMDL document.
- 2) Notice of the availability of the proposed TMDLs (similar to the website announcement) was included in one of the NPDES permit Public Notice mailings which is sent to approximately 90 interested persons or groups who have requested this information.
- 3) Letters were sent to WWTFs located in E. coli-impaired subwatersheds or drainage areas in the Nolichucky River Watershed, permitted to discharge treated effluent containing pathogens, advising them of the proposed TMDLs and their availability on the TDEC website. The letters also stated that a copy of the draft TMDL document would be provided on request. A letter was sent to the following facilities:

Denzil Bowman (Greeneville) WWTP (TN0021229) Jonesborough STP (TN0021547) Davy Crockett High School (TN0024406) Nolichucky Elementary School (TN0040673) Plus Mark Inc. (TN0054844) Centerview Elementary School (TN0054887) John M. Reed Home, Inc. (TN0056332) McDonald Elementary School (TN0058254) Ottway Elementary School (TN0058343) Lick Creek Valley (Mosheim) WWTP (TN0059366) Baileyton STP (TN0063932)

E. Coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page 50 of 52

4) A draft copy of the proposed TMDL was sent to those MS4s that are wholly or partially located in E. coli-impaired subwatersheds. A draft copy was sent to the following entities:

City of Greeneville, Tennessee (TNS075710) City of Jonesborough, Tennessee (TNS075728) City of Morristown, Tennessee (TNS076031) Hamblen County, Tennessee (TNS077763) Hawkins County, Tennessee (TNS075574) Washington County, Tennessee (TNS075787) Tennessee Dept. of Transportation (TNS077585)

5) A letter was sent to water quality partners in the Nolichucky River Watershed advising them of the proposed pathogen TMDLs and their availability on the TDEC website. The letter also stated that a written copy of the draft TMDL document would be provided upon request. A letter was sent to the following partners:

Middle Nolichucky Watershed Alliance Upper Nolichucky Watershed Alliance Keep Greene Beautiful Appalachian RC&D Council Smoky Mt. RC&D Council Tennessee Parks & Greenways Foundation Natural Resources Conservation Service Tennessee Valley Authority United States Forest Service Tennessee Department of Agriculture Tennessee Wildlife Resources Agency North Carolina's Basinwide Planning Program The Nature Conservancy

11.0 FURTHER INFORMATION

Further information concerning Tennessee's TMDL program can be found on the Internet at the Tennessee Department of Environment and Conservation website:

http://www.state.tn.us/environment/wpc/tmdl/

Technical questions regarding <u>this</u> TMDL should be directed to the following members of the Division of Water Pollution Control staff:

Vicki S. Steed, P.E., Watershed Management Section e-mail: <u>Vicki.Steed@state.tn.us</u>

Sherry H. Wang, Ph.D., Watershed Management Section e-mail: <u>Sherry.Wang@state.tn.us</u>

REFERENCES

- Bailey, F.C., Farmer, J.J., Ejiofor, A.O., and Johnson, T.L., 2005. Use of Flow Duration Curves and Load Duration Curves to Enhance Fecal Bacterial Source Tracking in Stoners Creek, Davidson County, Tennessee. In: Proceedings of The Fifteenth Tennessee Water Resources Symposium, Montgomery Bell State Park, Tennessee, Session 2B, Paper 4.
- Baldwin, Trisha, Layton, Alice, McKay, Larry, Jones, Sid, Johnson, Greg, Fout, Shay, and Garret, Victoria, 2005. Monitoring of Enterovirus and Hepatitis A Virus in Wells and Springs in East Tennessee. In: Proceedings of The Fifteenth Tennessee Water Resources Symposium, Montgomery Bell State Park, Tennessee, Session 2B, Paper 6.
- Farmer, J.J., Bailey, F.C., Ejiofor, A.O., and Johnson, T.L., 2005. Comparison of Antibiotic Resistance Patterns, Carbon Utilization Profiles, and Pulsed-field Gel Electrophoresis of Eschericia Coli for Fecal Bacterial Source Tracking in the Duck River, Middle Tennessee. In: Proceedings of The Fifteenth Tennessee Water Resources Symposium, Montgomery Bell State Park, Tennessee, Session 2B, Paper 5.
- Hyer, Kenneth E., and Douglas L. Moyer, 2004. Enhancing Fecal Coliform Total Maximum Daily Load Models Through Bacterial Source Tracking. Journal of the American Water Resources Association (JAWRA) 40(6):1511-1526. Paper No. 03180.
- Lawrence, Tom, 2003. Getting to the Source, Microbial Source Tracking in an Urban Stream. In: Proceedings of the Thirteenth Tennessee Water Resources Symposium, Montgomery Bell State Park, Tennessee, Session 2B, Paper 3.
- Layton, Alice, Williams, Dan, Gentry, Randy, and McKay, Larry, 2006. <u>Bacteroides</u> as an Alternative to <u>E. coli</u> as a Fecal Indicator. In: Proceedings of The Sixteenth Tennessee Water Resources Symposium, Montgomery Bell State Park, Tennessee, Session 3C, Paper 2.
- Lumb, A.M., McCammon, R.B., and Kittle, J.L., Jr., 1994, Users Manual for an expert system, (HSPFEXP) for calibration of the Hydrologic Simulation Program –Fortran: U.S. Geological Survey Water-Resources Investigation Report 94-4168,102 p.
- McKay, Larry, Layton, Alice, and Gentry, Randy, 2005. Development and Testing of Real-Time PCR Assays for Determining Fecal Loading and Source Identification (Cattle, Human, etc.) in Streams and Groundwater. This document is available on the UTK website: <u>http://web.utk.edu/~hydro/Research/McKayAGU2004abstract.pdf</u>.
- NCSU. 1994. Livestock Manure Production and Characterization in North Carolina, North Carolina Cooperative Extension Service, North Carolina State University (NCSU) College of Agriculture and Life Sciences, Raleigh, January 1994.
- SCWA. 2004. Guidance for Development of a Total Maximum Daily Load Implementation Plan for Fecal Coliform Reduction. Sinking Creek Watershed Alliance, September, 2004.
- Shah, Vikas G., Hugh Dunstan, and Phillip M. Geary, 2004. Application of Emerging Bacterial Source Tracking (BST) Methods to Detect and Distinguish Sources of Fecal Pollution in Waters. School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 Australia. This document is available on the University of Newcastle website: http://www.newcastle.edu.au/discipline/geology/staff_pg/pgeary/BacterialSourceTracking.pdf.

- Stiles, T., and B. Cleland, 2003, Using Duration Curves in TMDL Development & Implementation Planning. ASIWPCA "States Helping States" Conference Call, July 1, 2003. This document is a vailable on the Indiana Office of Water Quality website: <u>http://www.in.gov/idem/water/planbr/wqs/tmdl/durationcurveshscall.pdf</u>.
- TDEC. 2003. General Permit for Discharges from Small Municipal Separate Storm Sewer Systems. State of Tennessee, Department of Environment and Conservation, Division of Water Pollution Control, February 2003. This document is available on the TDEC website: <u>http://www.state.tn.us/environment/wpc/stormh2o/MS4II.htm</u>.
- TDEC. 2004. State of Tennessee Water Quality Standards, Chapter 1200-4-3 General Water Quality Criteria, January 2004. State of Tennessee, Department of Environment and Conservation, Division of Water Pollution Control.
- TDEC. 2006. Final 2006 303(d) List. State of Tennessee, Department of Environment and Conservation, Division of Water Pollution Control, October 2006.
- USDA, 2004. 2002 Census of Agricultue, Tennessee State and County Data, Volume 1, Geographic A rea Series, Part 42 (AC-02-A-42). USDA website URL: <u>http://www.nass.usda.gov/census/census02/volume1/tn/index2.htm</u>. June 2004.
- USEPA. 1991. Guidance for Water Quality –based Decisions: The TMDL Process. U.S. Environmental Protection Agency, Office of Water, Washington, DC. EPA-440/4-91-001, April 1991.
- USEPA. 1997. Ecoregions of Tennessee. U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, Oregon. EPA/600/R-97/022.
- USEPA, 2002a. Animal Feeding Operations Frequently Asked Questions. USEPA website URL: <u>http://cfpub.epa.gov/npdes/faqs.cfm?program_id=7</u>. September 12, 2002.
- USEPA, 2002b. Wastewater Technology Fact Sheet, Bacterial Source Tracking. U.S. Environmental Protection Agency, Office of Water. Washington, D.C. EPA 832-F-02-010, May 2 0 0 2 . This document is available on the EPA website: <u>http://www.epa.gov/owm/mtb/bacsortk.pdf</u>.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) 2/12/07 - Final) Page A-1 of A-6

APPENDIX A

Land Use Distribution in the Nolichucky River Watershed

	HUC-12 Subwatershed (06010108_) or Drainage Area					
Land Use	02	06	0401		0402	
	[acres]	[%]	[acres]	[%]	[acres]	[%]
Bare Rock/Sand/Clay	127.9	0.6	113.6	0.5	129.7	0.5
Deciduous Forest	3,705.5	18.7	5,454.9	22.0	4,347.6	17.9
Emergent Herbaceous Wetlands	2.2	0.0	0.7	0.0	0.9	0.0
Evergreen Forest	1,900.6	9.6	2,135.7	8.6	1,680.0	6.9
High Intensity Commercial/ Industrial/Transp.	184.6	0.9	33.8	0.1	162.3	0.7
High Intensity Residential	61.6	0.3	2.2	0.0	2.0	0.0
Low Intensity Residential	1,175.6	5.9	198.6	0.8	170.6	0.7
Mixed Forest	2,075.4	10.5	2,777.9	11.2	2,238.6	9.2
Open Water	4.0	0.0	2.2	0.0	3.3	0.0
Other Grasses (Urban/recreation; e.g. parks)	471.9	2.4	156.1	0.6	91.8	0.4
Pasture/Hay	8,632.0	43.6	12,464.1	50.2	12,668.3	52.2
Quarries/Strip Mines/Gravel Pits	13.1	0.1	38.3	0.2	0.0	0.0
Row Crops	1,377.5	7.0	1,419.3	5.7	2,721.9	11.2
Transitional	0.0	0.0	0.0	0.0	0.0	0.0
Woody Wetlands	66.5	0.3	38.3	0.2	54.5	0.2
Total	19,798.5	100.0	24,835.7	100.0	24,271.3	100.0

Table A-1. MRLC Land Use Distribution of Nolichucky River Subwatersheds

	HUC-12 Subwatershed (06010108_) or Drainage Area						
Land Use	Sinking C	Sinking Creek DA		0504		Meadow Creek DA	
	[acres]	[%]	[acres]	[%]	[acres]	[%]	
Bare Rock/Sand/Clay	41.4	0.4	103.2	0.4	58.5	0.5	
Deciduous Forest	1,646.6	17.4	6,250.4	25.0	5,073.5	40.0	
Emergent Herbaceous Wetlands	0.2	0.0	17.6	0.1	0.4	0.0	
Evergreen Forest	551.5	5.8	2,936.3	11.7	1,357.3	10.7	
High Intensity Commercial/ Industrial/Transp.	76.1	0.8	478.8	1.9	4.4	0.0	
High Intensity Residential	11.8	0.1	355.8	1.4	0.0	0.0	
Low Intensity Residential	114.5	1.2	1,636.8	6.5	19.6	0.2	
Mixed Forest	873.6	9.2	3,022.1	12.1	2,610.9	20.6	
Open Water	2.0	0.0	287.1	1.1	2.9	0.0	
Other Grasses (Urban/recreation; e.g. parks)	82.5	0.9	453.2	1.8	5.1	0.0	
Pasture/Hay	5,338.1	56.4	7,274.1	29.1	2,380.7	18.8	
Quarries/Strip Mines/Gravel Pits	0.0	0.0	0.0	0.0	0.0	0.0	
Row Crops	719.2	7.6	2,016.9	8.1	1,141.6	9.0	
Transitional	0.0	0.0	0.0	0.0	0.0	0.0	
Woody Wetlands	12.7	0.1	197.7	0.8	30.9	0.2	
Total	9,470.2	100.0	25,030.1	100.0	12,685.9	100.0	

Table A-1 (Cont.). MRLC Land Use Distribution of Nolichucky River Subwatersheds

	HUC-12 Subwatershed (06010108_) or Drainage Area					
Land Use	Pigeon Creek DA		0601		0603	
	[acres]	[%]	[acres]	[%]	[acres]	[%]
Bare Rock/Sand/Clay	24.2	0.6	0.0	0.0	0.9	0.0
Deciduous Forest	828.6	20.7	1,5674.4	38.4	3,520.5	11.9
Emergent Herbaceous Wetlands	0.2	0.0	40.5	0.1	0.0	0.0
Evergreen Forest	310.7	7.8	3,577.0	8.8	3,114.4	10.5
High Intensity Commercial/ Industrial/Transp.	30.0	0.7	104.7	0.3	165.2	0.6
High Intensity Residential	4.7	0.1	0.2	0.0	23.8	0.1
Low Intensity Residential	237.1	5.9	56.7	0.1	117.4	0.4
Mixed Forest	413.4	10.3	7,101.3	17.4	5,545.6	18.7
Open Water	0.9	0.0	839.1	2.1	7.6	0.0
Other Grasses (Urban/recreation; e.g. parks)	147.0	3.7	10.9	0.0	204.8	0.7
Pasture/Hay	1,653.1	41.3	9,501.2	23.3	14,238.6	48.1
Quarries/Strip Mines/Gravel Pits	0.0	0.0	0.7	0.0	0.0	0.0
Row Crops	346.5	8.7	3,837.0	9.4	2,677.4	9.0
Transitional	0.0	0.0	4.4	0.0	0.0	0.0
Woody Wetlands	8.5	0.2	81.0	0.2	11.6	0.0
Total	4,004.9	100.0	40,829.0	100.0	29,627.9	100.0

Table A-1 (Cont.). MRLC Land Use Distribution of Nolichucky River Subwatersheds

	HUC-12 Subwatershed (06010108_) or Drainage Area					
Land Use	0604		0605		0701	
	[acres]	[%]	[acres]	[%]	[acres]	[%]
Bare Rock/Sand/Clay	0.0	0.0	0.0	0.0	161.2	0.4
Deciduous Forest	1,232.7	16.0	2,653.2	12.2	16,738.5	36.9
Emergent Herbaceous Wetlands	0.0	0.0	0.0	0.0	1.3	0.0
Evergreen Forest	864.2	11.2	2,587.6	11.9	3,955.3	8.7
High Intensity Commercial/ Industrial/Transp.	353.6	4.6	281.8	1.3	592.5	1.3
High Intensity Residential	2.9	0.0	7.6	0.0	0.0	0.0
Low Intensity Residential	80.5	1.0	69.6	0.3	273.5	0.6
Mixed Forest	1,613.9	20.9	3,880.1	17.8	6,971.9	15.4
Open Water	19.1	0.2	19.8	0.1	21.3	0.0
Other Grasses (Urban/recreation; e.g. parks)	262.2	3.4	286.9	1.3	170.1	0.4
Pasture/Hay	2,746.8	35.6	10,487.7	48.2	14,006.4	30.9
Quarries/Strip Mines/Gravel Pits	90.7	1.2	0.0	0.0	0.0	0.0
Row Crops	454.1	5.9	1,487.8	6.8	2,377.0	5.2
Transitional	0.0	0.0	6.7	0.0	0.0	0.0
Woody Wetlands	0.0	0.0	0.0	0.0	71.2	0.2
Total	7,720.9	100.0	21,768.7	100.0	45,340.2	100.0

Table A-1 (Cont.). MRLC Land Use Distribution of Nolichucky River Subwatersheds

	HUC-12 Subwatershed (06010108) or Drainage Area					
Land Use	07	02	0705			
	[acres]	[%]	[acres]	[%]		
Bare						
Rock/Sand/Clay	177.7	0.4	1.6	0.0		
Deciduous Forest	12,413.4	26.0	5,518.5	15.7		
Emergent Herbaceous Wetlands	1.8	0.0	0.7	0.0		
Evergreen Forest	,5095.5	10.7	3,504.9	10.0		
High Intensity Commercial/ Industrial/Transp.	591.3	1.2	254.2	0.7		
High Intensity Residential	5.1	0.0	2.7	0.0		
Low Intensity Residential	514.6	1.1	62.3	0.2		
Mixed Forest	8,681.6	18.2	6,755.5	19.2		
Open Water	10.2	0.0	7.6	0.0		
Other Grasses (Urban/recreation; e.g. parks)	349.2	0.7	143.2	0.4		
Pasture/Hay	15,832.3	33.2	13,470.9	38.3		
Quarries/Strip Mines/Gravel Pits	0.0	0.0	0.0	0.0		
Row Crops	4,027.6	8.4	5,375.1	15.3		
Transitional	0.0	0.0	0.0	0.0		
Woody Wetlands	56.5	0.1	35.4	0.1		
Total	47,756.8	100.0	35,132.4	100.0		

Table A-1 (Cont.). MRLC Land Use Distribution of Nolichucky River Subwatersheds

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page B-1 of B-24

APPENDIX B

Water Quality Monitoring Data

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page B-2 of B-24

There are a number of water quality monitoring stations that provide data for waterbodies identified as impaired for pathogens in the Nolichucky River Watershed. The location of these monitoring stations is shown in Figure 5. Monitoring data recorded by TDEC at these stations are tabulated in Table B-1.

Monitoring	Date	E. Coli
Station	Date	[cts./100 mL]
	8/2/01	2419
	8/7/01	>2419
	8/21/01	>2419
	8/28/01	1733
	9/6/01	1986
	9/11/01	2419
	9/18/01	1203
	9/27/01	>2419
	10/4/01	1986
	10/23/01	2419
	8/4/05	579
BENT007.2HA	8/11/05	361
	8/16/05	488
	8/25/05	387
	9/6/05	411
	9/8/05	43
	9/14/05	345
	9/21/05	461
	9/23/05	361
	9/27/05	291
	9/29/05	461
	10/3/05	1414
	10/12/05	261
	8/1/00	1553
	8/22/00	613
BLIME000.5GE	9/26/00	980
DEIML000.0GL	10/17/00	138
	11/14/00	770
	12/12/00	61

Monitoring	Date	E. Coli
Station		[cts./100 mL]
	1/17/01	132
	2/13/01	199
	3/31/01	1414
	4/17/01	866
	5/8/01	866
	6/5/01	860
	7/11/01	2620
	10/24/01	99
	2/10/03	1200
BLIME000.5GE	7/16/03	1553
(continued)	10/14/03	613
(001111100)	1/20/04	816
	4/20/04	921
	8/4/04	1553
	11/4/04	2419
	5/2/05	1414
	7/14/05	2419
	8/10/05	1310
	9/14/05	980
	10/20/05	1420
	12/8/05	387
	8/22/00	488
	9/26/00	461
	10/17/00	276
	11/14/00	488
	12/12/00	127
	1/17/01	185
BLIME002.9WN	2/13/01	488
	3/31/01	1203
	4/17/01	548
	5/8/01	548
	6/5/01	866
	7/11/01	1600
	10/24/01	172

Monitoring	Date	E. Coli
Station		[cts./100 mL]
	8/1/00	770
	7/14/05	1553
	8/10/05	1600
BLIME004.0WN	9/14/05	740
	10/18/05	727
	10/20/05	1000
	11/3/05	326
	12/8/05	488
	8/22/00	2419
	9/26/00	1986
	10/17/00	1986
	11/14/00	613
	12/12/00	228
BLIME007.7WN	1/17/01	548
DLINEUU/./WIN	2/13/01	727
	3/13/01	1733
	4/17/01	1553
	5/8/01	1890
	6/5/01	2060
	10/24/01	630
	8/1/00	2419
	8/22/00	9330
	9/26/00	13130
	10/17/00	2419
	11/14/00	2419
	12/12/00	1986
	1/17/01	1203
CARSOUUD.1WN	2/13/01	1985
	3/13/01	2419
	4/17/01	3880
	5/8/01	6630
	6/5/01	8620
	7/11/01	5910
	10/24/01	2920

Monitoring	Date	E. Coli
Station		[cts./100 mL]
	7/14/05	1930
	8/10/05	1553
CARSO000.1WN	9/14/05	816
(continued)	10/18/05	1414
(continuou)	10/20/05	1553
	11/3/05	2160
	12/8/05	2419
	8/22/00	2330
	9/26/00	3270
	10/17/00	770
	11/14/00	1986
	12/12/00	2419
CARSO001.8WN	1/17/01	1300
CARSOUUT.OWN	2/13/01	1733
	3/13/01	2419
	4/17/01	2419
	5/8/01	2180
	6/5/01	1100
	10/24/01	816
	2/18/98	816
	8/21/00	186
	8/2/01	517
	8/7/01	770
	8/21/01	248
	8/28/01	517
	9/6/01	517
ECO67G05	9/11/01	488
	9/18/01	291
	9/27/01	225
	10/4/01	411
	10/23/01	211
	4/11/05	140
	8/1/05	727
	9/19/05	222

Monitoring	Date	E. Coli
Station		[cts./100 mL]
	8/2/01	1986
	8/7/01	2419
	8/21/01	1553
	8/28/01	2419
	9/6/01	2419
	9/11/01	649
	9/18/01	980
	9/27/01	727
	10/1/01	687
	10/23/01	548
	8/4/05	378
FLAT000.6HA	8/11/05	225
	8/16/05	579
	8/23/05	921
	8/25/05	727
	9/6/05	435
	9/8/05	921
	9/14/05	517
	9/21/05	365
	9/27/05	179
	9/29/05	2419
	10/3/05	488
	10/12/05	345
	7/14/05	1553
	8/10/05	1553
HOMIN000.2WN	9/14/05	2280
	10/20/05	2500
	11/3/05	921
	12/8/05	1553
	8/1/00	1986
	8/22/00	1210
JOCKE000.1WN	9/26/00	1733
	10/17/00	326
	11/14/00	866
	12/12/00	147

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page B-7 of B-24

Monitoring	Date	E. Coli
Station		[cts./100 mL]
	1/17/01	157
	2/13/01	613
	3/13/01	1553
	4/17/01	2419
	5/8/01	1203
	6/5/01	1300
JOCKE000.1WN	7/11/01	921
(continued)	10/24/01	520
(continuou)	7/14/05	2490
	8/10/05	1733
	9/14/05	3990
	10/18/05	2419
	10/20/05	10
	11/3/05	310
	12/8/05	225
	8/22/00	1220
	9/26/00	3450
	10/17/00	1733
	11/14/00	1120
	12/12/00	548
	1/17/01	148
JOCKE003.2GE	2/13/01	248
	3/13/01	816
	4/17/01	1890
	5/8/01	6630
	6/5/01	1733
	7/11/01	980
	10/24/01	1553
	12/15/98	>2419
	9/7/99	83
LICK001.0GE	2/17/00	411
LICKUUT.UGL	5/11/00	114
	8/15/00	260
	8/17/00	435

Monitoring	Date	E. Coli
Station		[cts./100 mL]
	9/14/00	510
	10/10/00	110
	11/7/00	228
	12/5/00	65
	1/4/01	5
	1/30/01	55
	2/28/01	310
	3/27/01	104
	4/24/01	167
	5/22/01	206
	6/19/01	285
	7/24/01	410
LICK001.0GE	9/12/01	307
(continued)	12/11/01	520
(00111111000)	2/10/03	105
	7/16/03	219
	10/14/03	112
	1/20/04	687
	4/20/04	272
	8/4/04	308
	11/4/04	2419
	2/8/05	40
	5/2/05	344
	8/17/05	630
	9/28/05	520
	10/25/05	140
	12/13/05	88
	8/17/00	517
	7/20/05	866
LICK003.8GE	8/17/05	291
	9/28/05	105
	10/25/05	200
	11/16/05	579

Monitoring	Date	E. Coli
Station		[cts./100 mL]
	8/16/00	411
	7/20/05	1350
	8/17/05	387
LICK006.5GE	9/28/05	300
	10/25/05	310
	11/16/05	300
	12/13/05	520
	8/15/00	261
	9/14/00	630
	10/10/00	91
	11/7/00	345
	12/5/00	166
	1/4/01	71
	1/30/01	73
LICK011.9GE	2/28/01	148
	3/27/01	770
	4/24/01	238
	5/22/01	411
	6/19/01	179
	7/24/01	2720
	9/12/01	630
	12/11/01	11300
	8/16/00	461
	7/20/05	6970
	8/17/05	410
LICK015.5GE	9/28/05	210
	10/25/05	410
	11/16/05	1203
	12/13/05	200
	8/15/00	310
	9/14/00	488
LICK020.5GE	10/10/00	1986
	11/7/00	980
	12/5/00	88

Monitoring	Date	E. Coli
Station	Buto	[cts./100 mL]
	1/4/01	2419
	1/30/01	107
	2/28/01	99
	3/27/01	579
LICK020.5GE	4/24/01	219
(continued)	5/22/01	299
	6/19/01	300
	7/24/01	410
	9/12/01	3590
	12/11/01	6270
	8/16/00	649
	7/20/05	1300
	8/17/05	613
LICK024.2GE	9/28/05	225
	10/25/05	200
	11/16/05	579
	12/13/05	276
	8/15/00	980
	9/14/00	730
	10/10/00	55
	11/7/00	326
	12/5/00	56
	1/4/01	20
	1/30/01	74
	2/28/01	142
LICK033.6GE	3/27/01	53
LICK033.0GE	4/24/01	179
	5/22/01	225
	6/19/01	326
	7/24/01	410
	9/21/01	860
	12/11/01	1553
	7/20/05	3310
	8/17/05	1600
	9/28/05	124

Monitoring Date	Date	E. Coli
Station	Bato	[cts./100 mL]
LICK033.6GE	10/25/05	200
(continued)	11/16/05	1100
(continuou)	12/13/05	154
LICK040.8GE	8/15/00	816
	8/15/00	548
	7/20/05	1430
	8/17/05	520
LICK045.2GE	9/28/05	328
	10/25/05	410
	11/16/05	2330
	12/13/05	300
	8/15/00	520
	9/14/00	410
	10/10/00	272
	11/7/00	291
	12/5/00	461
	1/4/01	40
	1/30/01	154
LICK047.2GE	3/7/01	172
	3/27/01	118
	4/24/01	517
	5/22/01	2419
	6/19/01	1120
	7/24/01	1430
	9/12/01	620
	12/11/01	5380
	8/14/00	866
	8/15/00	579
	9/14/00	1340
	10/10/00	249
LICK052.3GE	11/7/00	285
	12/5/00	135
	1/4/01	32
	1/30/01	248
	2/28/01	579

Monitoring	Date	E. Coli
Station		[cts./100 mL]
	3/27/01	75
	4/24/01	299
	5/22/01	866
	6/19/01	727
	7/24/01	770
LICK052.3GE	9/12/01	687
(continued)	12/11/01	16160
(7/20/05	1210
	8/17/05	630
	9/28/05	740
	10/25/05	579
	11/16/05	3500
	12/13/05	129
	8/15/00	460
	9/14/00	100
	10/10/00	365
	11/7/00	2419
	12/5/00	2419
	1/4/01	75
	1/30/01	1733
	2/28/01	228
	3/27/01	192
	4/24/01	1414
LICK061.0GE	5/22/01	1553
	6/19/01	1710
	7/24/01	365
	9/12/01	980
	12/11/01	11530
	7/20/05	866
	8/17/05	291
	9/28/05	308
	10/25/05	461
	11/16/05	1120
	12/13/05	510

Monitoring	Date	E. Coli
Station		[cts./100 mL]
	7/14/05	1733
	8/10/05	1120
LLIME000.1WN	9/14/05	740
	10/20/05	700
	11/3/05	727
	12/8/05	185
	2/10/03	78
	7/16/03	727
	10/14/03	387
	1/20/04	345
LLIME007.0WN	4/20/04	1300
	8/4/04	2419
	11/4/04	1986
	5/2/05	1120
	8/2/05	1046
	7/14/05	92080
LLIME007.7WN	8/10/05	23590
	9/14/05	770
	8/2/01	613
	8/7/01	727
	8/21/01	435
	8/28/01	>2419
	9/6/01	261
LONG000.7HA	9/11/01	548
	9/18/01	461
	9/27/01	150
	10/4/01	211
	10/23/01	68
	8/11/05	411
	8/18/99	770
	8/19/99	816
MEADO000.4GE	9/15/99	1553
	9/16/99	980
	10/13/99	517
	10/14/99	517

Monitoring	Date	E. Coli
Station		[cts./100 mL]
	2/28/00	1986
	2/29/00	2419
	3/27/00	1300
	3/28/00	1046
	4/24/00	687
MEADO000.4GE	4/25/00	>2419
(continued)	8/23/00	613
	7/13/05	1300
	8/3/05	950
	9/7/05	1600
	10/4/05	435
	11/2/05	816
	8/18/99	1733
	8/19/99	1986
	9/15/99	1733
	9/16/99	1733
	10/13/99	816
	10/14/99	1120
	2/28/00	1414
	2/29/00	345
MEADO002.7GE	3/27/00	1414
	3/28/00	1300
	4/24/00	1733
	4/25/00	>2419
	7/13/05	46110
	8/3/05	7710
	9/7/05	14390
	10/4/05	7630
	11/2/05	7330
	8/18/99	1414
	8/19/99	649
	9/15/99	816
MEADO004.1GE	9/16/99	461
	10/13/99	517
	10/14/99	579

Monitoring	Date	E. Coli
Station		[cts./100 mL]
	2/28/00	980
	2/29/00	687
	3/27/00	980
	3/28/00	313
MEADO004.1GE	4/24/00	980
(continued)	4/25/00	>2419
(continued)	7/13/05	2690
	8/3/05	1320
	9/7/05	2110
	10/4/05	2210
	11/2/05	740
	8/15/99	126
	8/18/99	579
	8/19/99	461
	9/16/99	77
	10/13/99	110
	10/14/99	517
	2/28/00	1986
	2/29/00	1203
MEADO006.4CO	3/27/00	1987
	3/28/00	1733
	4/24/00	1733
	4/25/00	>2419
	7/13/05	5860
	8/3/05	365
	9/7/05	21
	10/4/05	579
	11/2/05	1350
	8/15/00	1580
	9/14/00	4110
	10/10/00	2419
MINK001.0GE	11/7/00	1986
	12/5/00	687
	1/4/01	326
	1/30/01	461
	1/30/01	+01

Monitoring	Date	E. Coli
Station		[cts./100 mL]
	3/27/01	166
	4/24/01	980
	5/22/01	1733
	6/19/01	1046
MINK001.0GE	7/24/01	2720
(continued)	9/12/01	1203
	12/11/01	5560
	7/20/05	5910
	8/17/05	9330
	9/28/05	2030
	8/4/05	146
	8/11/05	1046
	8/16/05	517
	8/23/05	2419
	9/6/05	201
	9/8/05	142
MUD000.4HA	9/14/05	7
	9/21/05	34
	9/27/05	111
	9/29/05	210
	10/3/05	14
	10/12/05	14
	8/1/00	1733
	8/22/00	1300
	9/26/00	5650
	10/17/00	866
	11/14/00	1120
	11/14/00	285
	12/12/00	488
MUDDY000.4WN	1/17/01	613
	2/13/01	613
	3/13/01	2419
	4/17/01	1120
	5/8/01	2400
	6/5/01	2090
	10/24/01	840

Monitoring	Date	E. Coli
Station		[cts./100 mL]
MUDDY000.4WN	7/14/05	3270
(continued)	8/10/05	5370
(continuou)	9/14/05	1340
	8/22/00	1986
	9/26/00	11300
	10/17/00	2419
	12/12/00	649
	1/17/01	238
MUDDY005.1WN	2/13/01	770
	3/13/01	2419
	4/17/01	2419
	5/8/01	2750
	6/5/01	2419
	10/24/01	740
	8/22/00	1203
	9/26/00	30760
	10/17/00	649
	11/14/00	1553
	12/12/00	461
MUDDY007.1WN	1/17/01	2419
	2/13/01	345
	3/13/01	1733
	4/17/01	1340
	5/8/01	921
	6/5/01	4870
	10/24/01	1340
	8/7/01	727
	8/15/01	1203
	8/21/01	57
	8/28/01	37
NOLIC005.3HA	9/6/01	345
	9/11/01	55
	9/18/01	36
	9/27/01	29

Monitoring	Date	E. Coli
Station		[cts./100 mL]
	10/4/01	42
	10/23/01	9
	11/14/01	1
NOLIC005.3HA	12/10/01	19
(continued)	1/15/02	3
(continuou)	2/26/02	1
	3/25/02	88
	5/7/02	34
	7/27/05	17
NOLIC038.5GE	8/10/05	6
	7/14/05	520
NOLIC039.3GE	10/20/05	3
	11/3/05	3
	8/15/00	816
PCAMP000.5GE	7/20/05	1480
PCAMPUUU.3GE	8/17/05	201
	12/13/05	410
	8/18/99	1986
	8/19/99	921
	9/15/99	365
	9/16/99	236
	10/14/99	121
	2/28/00	866
	2/29/00	435
PIGEO000.9GE	3/27/00	921
PIGEO000.9GE	3/28/00	2419
	4/24/00	613
	4/25/00	2419
	7/13/05	276
	8/3/05	740
	9/7/05	4640
	10/4/05	579
	11/2/05	200
PIGEO001.0GE	8/23/00	411

Monitoring	Date	E. Coli
Station	Balo	[cts./100 mL]
	8/18/99	>2419
	8/19/99	>2419
	9/15/99	>2419
	9/16/99	>2419
	10/13/99	>2419
	10/14/99	>2419
	2/28/00	461
	2/29/00	1986
PIGEO002.8GE	3/27/00	1203
	3/28/00	1986
	4/24/00	921
	4/25/00	>2419
	7/13/05	3310
	8/3/05	3230
	9/7/05	1100
	10/4/05	1210
	11/2/05	365
	8/18/99	101
	8/19/99	161
	9/15/99	2419
	9/16/99	1120
	10/13/99	2419
	10/14/99	1120
	2/28/00	816
	2/29/00	613
PIGEO005.7GE	3/27/00	866
	3/28/00	1414
	4/24/00	111
	4/25/00	1300
	7/13/05	1210
	8/3/05	1210
	9/7/05	410
	10/4/05	620
	11/2/05	630

Monitoring	Date	E. Coli
Station		[cts./100 mL]
	12/5/00	1986
	1/4/01	1986
	1/30/01	921
	2/28/01	411
	3/27/01	1300
	4/24/01	2419
	5/22/01	2419
	6/19/01	13960
POTTE000.3GE	7/24/01	16640
	9/12/01	2920
	12/11/01	45690
	7/20/05	630
	8/17/05	1040
	9/28/05	10
	10/25/05	200
	11/16/05	2030
	12/13/05	410
	8/15/00	980
	9/14/00	435
	11/7/00	1553
	12/5/00	49
	1/4/01	12
	1/30/01	66
	2/28/01	308
PYBOR000.1GE	3/27/01	345
	4/24/01	144
	5/22/01	816
	6/19/01	2230
	7/24/01	76
	7/20/05	7120
	8/17/05	1300
	9/28/05	310
	8/2/00	411
RICHL001.3GE	8/29/00	548
	9/19/00	326

Monitoring	Date	E. Coli
Station		[cts./100 mL]
	10/24/00	199
	11/29/00	115
	12/14/00	2419
	1/9/01	260
	2/5/01	613
	3/7/01	285
	4/4/01	172
	5/1/01	517
	5/29/01	548
	6/26/01	1850
RICHL001.3GE	8/22/01	727
NOTEOU	11/14/01	272
	2/10/03	579
	7/16/03	155
	10/14/03	214
	1/20/04	1300
	4/28/04	457
	8/4/04	488
	11/4/04	2419
	2/8/05	687
	5/3/05	290
	8/2/05	308
	8/2/00	411
	8/29/00	980
	9/19/00	816
	10/24/00	219
	11/29/00	313
RICHL004.3GE	12/14/00	2419
	1/9/01	205
	2/5/01	228
	3/7/01	228
	4/4/01	345
	5/1/01	1300
	5/29/01	816

Monitoring	Date	E. Coli
Station		[cts./100 mL]
	6/26/01	1830
RICHL004.3GE (continued)	8/22/01	980
(continued)	11/14/01	1120
	7/14/05	2820
	8/10/05	8200
RICHL006.0GE	9/14/05	2400
RICHLUU0.UGE	10/20/05	129970
	11/3/05	10170
	12/8/05	866
	8/2/00	1203
	8/29/00	435
	9/19/00	248
	10/24/00	88
	11/29/00	649
	12/14/00	816
	1/9/01	86
RICHL007.1GE	2/5/01	190
	3/7/01	62
	4/4/01	172
	5/1/01	291
	5/29/01	411
	6/26/01	1120
	8/22/01	214
	11/14/01	649
	6/26/01	727
	8/22/01	411
SINKI000.2GE	1/20/04	548
SHHAIVUV.20L	8/4/04	1414
	11/4/04	1986
	2/8/05	86
	8/2/00	387
	8/29/00	290
SINKI000.5GE	9/19/00	461
SINNIUUU.JGL	10/24/00	44
	11/29/00	47
	12/14/00	161

Monitoring	Date	E. Coli
Station	Ballo	[cts./100 mL]
	11/29/00	47
	12/14/00	161
	1/9/01	299
	3/7/01	161
	4/4/01	435
	5/1/01	649
	5/29/01	461
	11/14/01	1046
SINKI000.5GE	2/10/03	345
(continued)	7/16/03	344
	10/14/03	411
	4/20/05	1
	5/3/05	299
	7/14/05	488
	8/10/05	300
	9/14/05	72
	10/20/05	520
	12/8/05	163
	8/2/00	1553
	8/29/00	1046
	9/19/00	3010
	10/24/00	4190
	11/28/00	770
	12/14/00	921
	1/9/01	1120
	2/5/01	1414
SINKI003.0GE	3/7/01	649
SINKI005.0GL	4/4/01	687
	5/1/01	921
	5/29/01	2419
	6/26/01	2750
	8/22/01	1203
	11/14/01	1100
	7/14/05	2620
	8/10/05	2920
	9/14/05	3310

Monitoring	Date	E. Coli
Station		[cts./100 mL]
	8/2/00	1046
	8/29/00	727
	9/19/00	1553
	10/24/00	649
	11/29/00	121
	12/14/00	365
	1/9/01	770
SINKI004.5GE	2/5/01	515
	3/7/01	260
	4/4/01	1733
	5/1/01	461
	5/29/01	461
	6/26/01	1120
	8/22/01	2130
	11/14/01	66

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-1 of C-54

APPENDIX C

Load Duration Curve Development and Determination of Daily Loading Functions and Required Load Reductions

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-2 of C-54

The TMDL process quantifies the amount of a pollutant that can be assimilated in a waterbody, identifies the sources of the pollutant, and recommends regulatory or other actions to be taken to achieve compliance with applicable water quality standards based on the relationship between pollution sources and in-stream water quality conditions. A TMDL can be expressed as the sum of all point source loads (Waste Load Allocations), nonpoint source loads (Load Allocations), and an appropriate margin of safety (MOS) that takes into account any uncertainty concerning the relationship between effluent limitations and water quality:

$$\mathsf{TMDL} = \Sigma \mathsf{WLAs} + \Sigma \mathsf{LAs} + \mathsf{MOS}$$

The objective of a TMDL is to allocate loads among all of the known pollutant sources throughout a watershed so that appropriate control measures can be implemented and water quality standards achieved. 40 CFR §130.2 (i) states that TMDLs can be expressed in terms of mass per time, toxicity, or other appropriate measure.

C.1 Development of TMDLs and Load Reductions

E. coli TMDLs, WLAs, and LAs were developed and expressed as daily loads for impaired subwatersheds and drainage areas in the Nolichucky River Watershed. E. coli Load Duration Curves (LDCs) were also developed for impaired subwatersheds and drainage areas in the Nolichucky River Watershed to determine the reduction in pollutant loading required to decrease existing, instream E. coli concentrations to target levels.

C.1.1 Development of Flow Duration Curves

A flow duration curve is a cumulative frequency graph, constructed from historic flow data at a particular location, that represents the percentage of time a particular flow rate is equaled or exceeded. Flow duration curves are developed for a waterbody from daily discharges of flow over a period of record. In general, there is a higher level of confidence that curves derived from data over a long period of record correctly represent the entire range of flow. The preferred method of flow duration curve computation uses daily mean data from USGS continuous-record stations located on the waterbody of interest. For ungaged streams, alternative methods must be used to estimate daily mean flow. These include: 1) regression equations (using drainage area as the independent variable) developed from continuous record stations in the same ecoregion; 2) drainage area extrapolation of data from a nearby continuous-record station of similar size and topography; and 3) calculation of daily mean flow using a dynamic computer model, such as the Loading Simulation Program C++ (LSPC).

Flow duration curves for impaired waterbodies in the Nolichucky River Watershed were derived from LSPC hydrologic simulations based on parameters derived from calibrations at USGS Station No. 03466228 (13.7 square miles), 03470000 (353 square miles), and 03465500 (805 square miles) (see Appendix D for details of calibration). For example, a flow-duration curve for Big Limestone Creek at RM 0.5 was constructed using simulated daily mean flow for the period from 10/1/94 through 9/31/04 (RM 0.5 corresponds to the location of monitoring station BLIME000.5GE). This flow duration curve is shown in Figure C-1 and represents the cumulative distribution of daily discharges arranged to show percentage of time specific flows were exceeded during the period of record (the highest daily mean flow during this period is exceeded 0% of the time and the lowest daily mean flow is equaled or exceeded 100% of the time). Flow duration curves for other impaired waterbodies were derived using a similar procedure.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-3 of C-54

C.1.2 Development of Load Duration Curves and Determination of TMDLs

When a water quality target concentration is applied to the flow duration curve, the resulting load duration curve (LDC) represents the allowable pollutant loading in a waterbody over the entire range of flow. Pollutant monitoring data, plotted on the LDC, provides a visual depiction of stream water quality as well as the frequency and magnitude of any exceedances. Load duration curve intervals can be grouped into several broad categories or zones, in order to provide additional insight about conditions and patterns associated with the impairment. For example, the duration curve could be divided into five zones: high flows (exceeded 0-10% of the time), moist conditions (10-40%), median or mid-range flows (40-60%), dry conditions (60-90%), and low flows (90-100%). Impairments observed in the low flow zone typically indicate the influence of point sources, while those further left on the LDC (representing zones of higher flow) generally reflect potential nonpoint source contributions (Stiles, 2003).

E. coli load duration curves for impaired waterbodies in the Nolichucky River Watershed were developed from the flow duration curves developed in Section C.1.1, E. coli target concentrations, and available water quality monitoring data. Load duration curves, daily loading functions, and required load reductions were developed using the following procedure (Big Limestone Creek is shown as an example):

1. A target load-duration curve (LDC) was generated for Big Limestone Creek by applying the E. coli target concentration of 487 CFU/100 mL to each of the ranked flows used to generate the flow duration curve (ref.: Section D.1) and plotting the results. The E. coli target maximum load corresponding to each ranked daily mean flow is:

(Target Load)_{Big Limestone Creek} = (487 CFU/100 mL) x (Q) x (UCF)

where:

Target Load = TMDL (CFU/day) Q = daily instream mean flow UCF = the required unit conversion factor

TMDL = $(1.20 \times 10^{10}) \times (Q) CFU/day$

 Daily loads were calculated for each of the water quality samples collected at monitoring station BLIME000.5GE (ref.: Table B-1) by multiplying the sample concentration by the daily mean flow for the sampling date and the required unit conversion factor. BLIME000.5GE was selected for LDC analysis because it was the monitoring station on Big Limestone Creek with the most exceedances of the target concentration.

Note: In order to be consistent for all analyses, the derived daily mean flow was used to compute sampling data loads, even if measured ("instantaneous") flow data was available for some sampling dates.

Example – 2/10/03 sampling event: *Modelled Flow* = 123.98 cfs *Concentration* = 1200 CFU/100 mL Daily Load = 3.64x10¹² CFU/day

3. Using the flow duration curves developed in C.1.1, the "percent of days the flow was

exceeded" (PDFE) was determined for each sampling event. Each sample load was then plotted on the load duration curves developed in Step 1 according to the PDFE. The resulting E. coli load duration curve for is shown in Figure C-5.

4. For cases where the existing load exceeded the target maximum load at a particular PDFE, the reduction required to reduce the sample load to the target load was calculated.

Example – 2/10/03 sampling event: Target Concentration = 487 CFU/100 mL Measured Concentration = 1200 CFU/100 mL Reduction to Target = 59.4%

5. The 90th percentile value for all of the E. coli sampling data at BLIME000.5GE monitoring site was determined. If the 90th percentile value exceeded the target maximum E. coli concentration, the reduction required to reduce the 90th percentile value to the target maximum concentration was calculated (Table C-6).

```
Example: Target Concentration = 487 CFU/100 mL
90<sup>th</sup> Percentile Concentration = 1899 CFU/100 mL
Reduction to Target = 74.4%
```

6. For cases where five or more samples were collected over a period of not more than 30 consecutive days, the geometric mean E. coli concentration was determined and compared to the target geometric mean E. coli concentration of 126 CFU/100 mL. If the sample geometric mean exceeded the target geometric mean concentration, the reduction required to reduce the sample geometric mean value to the target geometric mean concentration was calculated.

Example: Insufficient monitoring data was available for Big Limestone Creek at Mile 0.5 Sufficient data was available for Bent Creek at Mile 7.2 Sampling Period = 9/6/01 – 10/4/01 Geometric Mean Concentration = 1944.0 CFU/100 mL Target Concentration = 126 CFU/100 mL Reduction to Target = 93.5%

7. The load reductions required to meet the target maximum (Step 5) and target 30-day geometric mean concentrations (Step 6) of E. coli were compared and the load reduction of the greatest magnitude selected as the TMDL for Big Limestone Creek.

Load duration curves, TMDLs, and required load reductions of other impaired waterbodies were derived in a similar manner and are shown in Figures C-2 through C-24 and Tables C-1 through C-36.

C.2 Development of WLAs, LAs, and MOS

As previously discussed, a TMDL can be expressed as the sum of all point source loads (WLAs), nonpoint source loads (LAs), and an appropriate margin of safety (MOS) that takes into account

any uncertainty concerning the relationship between effluent limitations and water quality:

 $\mathsf{TMDL} = \Sigma \mathsf{WLAs} + \Sigma \mathsf{LAs} + \mathsf{MOS}$

Expanding the terms:

 $TMDL = [\Sigma WLAs]_{WWTF} + [\Sigma WLAs]_{MS4} + [\Sigma WLAs]_{CAFO} + [\Sigma LAs]_{DS} + [\Sigma LAs]_{SW} + MOS$

For pathogen TMDLs in each impaired subwatershed or drainage area, WLA terms include:

- [∑WLAs]_{WWTF} is the allowable load associated with discharges of NPDES permitted WWTFs located in impaired subwatersheds or drainage areas. Since NPDES permits for these facilities specify that treated wastewater must meet instream water quality standards at the point of discharge, no additional load reduction is required. WLAs for WWTFs are calculated from the facility design flow and the Monthly Average permit limit.
- [∑WLAs]_{CAFO} is the allowable load for all CAFOs in an impaired subwatershed or drainage area. All wastewater discharges from a CAFO to waters of the state of Tennessee are prohibited, except when either chronic or catastrophic rainfall events cause an overflow of process wastewater from a facility properly designed, constructed, maintained, and operated to contain:
 - All process wastewater resulting from the operation of the CAFO (such as wash water, parlor water, watering system overflow, etc.); plus,
 - All runoff from a 25-year, 24-hour rainfall event for the existing CAFO or new dairy or cattle CAFOs; or all runoff from a 100-year, 24-hour rainfall event for a new swine or poultry CAFO.

Therefore, a WLA of zero has been assigned to this class of facilities.

• [∑WLAs]_{MS4} is the allowable E. coli load for discharges from MS4s. E. coli loading from MS4s is the result of buildup/wash-off processes associated with storm events.

LA terms include:

- [∑LAs]_{DS} is the allowable E. coli load from "other direct sources". These sources include leaking septic systems, illicit discharges, and animals access to streams. The LA specified for all sources of this type is zero CFU/day (or to the maximum extent practicable).
- [∑LAs]_{SW} represents the allowable E. coli loading from nonpoint sources indirectly going to surface waters from all land use areas (except areas covered by a MS4 permit) as a result of the buildup/wash-off processes associated with storm events.

Since WWTFs discharges must comply with instream water quality criteria (TMDL target) at the point of discharge, $[\Sigma WLAs]_{CAFO} = 0$, and $[\Sigma LAs]_{DS} = 0$, the expression relating TMDLs to precipitation-based point and nonpoint sources may be simplified to:

 $\mathsf{TMDL} - \mathsf{MOS} = [\Sigma \mathsf{WLAs}]_{\mathsf{MS4}} + [\Sigma \mathsf{LAs}]_{\mathsf{SW}}$

C.2.1 Daily Load Calculation

WLAs for MS4s and LAs for precipitation-based nonpoint sources are equal and expressed as the daily allowable load per unit area (acre) resulting from a decrease in instream E. coli concentrations to TMDL target values minus MOS:

WLA[MS4] = LA = {TMDL - MOS - WLA[WWTFs]} / DA

where: Q = daily instream mean flow DA = drainage area (acres)

Using Big Limestone Creek (segment 1000) as an example:

TMDL_{Big Limestone Creek} = (487 CFU/100 mL) x (Q) x (UCF)

 $= 1.20 \times 10^{10} \times Q$

 $MOS_{Big Limestone Creek} = TMDL \times 0.10 = 1.20 \times 10^9 \times Q$

 $MOS = (1.20 \times 10^9) \times (Q) CFU/day$

 $WLA[MS4]_{Big \ Limestone \ Creek} = LA_{Big \ Limestone \ Creek}$ = {TMDL - MOS - WLA[WWTFs]} / DA = {(1.20x10¹⁰ x Q) - (1.20x10⁹ x Q) - (1.781x10⁸)} / (4.81x10⁴)

$$WLA[MS4] = LA = [2.246 \times 10^5 \times Q] - [3.704 \times 10^3]$$

TMDLs, WLAs, & LAs for other impaired subwatersheds and drainage areas were derived in a similar manner and are summarized in Table C-37.

C.2.2 Percent Load Reduction Calculations

As stated in Section 8.4, an explicit MOS, equal to 10% of the E. coli water quality targets (ref.: Section 5.0), was utilized for determination of the percent load reductions necessary to achieve the WLAs and LAs:

Instantaneous Maximum (Tier II):

Target – MOS = (487 CFU/100 ml) – 0.1(487 CFU/100 ml) Target – MOS = 438 CFU/100 ml

Instantaneous Maximum (non-Tier II):

Target – MOS = (941 CFU/100 ml) – 0.1(941 CFU/100 ml) Target – MOS = 847 CFU/100 ml

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-7 of C-54

30-Day Geometric Mean: Target – MOS = (126 CFU/100 ml) – 0.1(126 CFU/100 ml) Target – MOS = 113 CFU/100 ml

Required load reductions for precipitation-based nonpoint sources were developed using methods similar to those described in C.1.2 (again, using Big Limestone Creek as an example):

8. For cases where the existing load exceeded the "target maximum load – MOS" at a particular PDFE, the reduction required to reduce the sample load to the "target – MOS" load was calculated.

Example – 2/10/03 sampling event: Target Concentration -- MOS = 438 CFU/100 mL Measured Concentration = 1200 CFU/100 mL Reduction to Target -- MOS = 63.5%

If the 90th percentile value for all of the E. coli sampling data at BLIME000.5GE monitoring site (calculated in Step 5) exceeded the "target maximum – MOS" E. coli concentration, the reduction required to reduce the 90th percentile value to the "target maximum – MOS" concentration was calculated (Table C-6).

10. For cases where five or more samples were collected over a period of not more than 30 consecutive days, the geometric mean E. coli concentration was determined and compared to the "target geometric mean E. coli concentration – MOS" of 113 CFU/100 mL. If the sample geometric mean exceeded the "target geometric mean – MOS" concentration, the reduction required to reduce the sample geometric mean value to the "target geometric mean – MOS" concentration was calculated.

Example: Insufficient monitoring data was available for Big Limestone Creek at Mile 0.5 Sufficient data was available for Bent Creek at Mile 7.2 Sampling Period = 9/6/01 – 10/4/01 Geometric Mean Concentration = 1944.0 CFU/100 mL Target Concentration -- MOS = 113 CFU/100 mL Reduction to Target -- MOS = 94.2%

11. The load reductions required to meet the "target maximum – MOS" (Step 10) and "target 30-day geometric mean – MOS" concentrations (Step 11) of E. coli were compared and the load reduction of the greatest magnitude selected as the WLA for MS4s and/or LA for precipitation-based nonpoint sources for Big Limestone Creek.

Required load reductions of other impaired waterbodies were derived in a similar manner and are summarized in Table C-38.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-8 of C-54

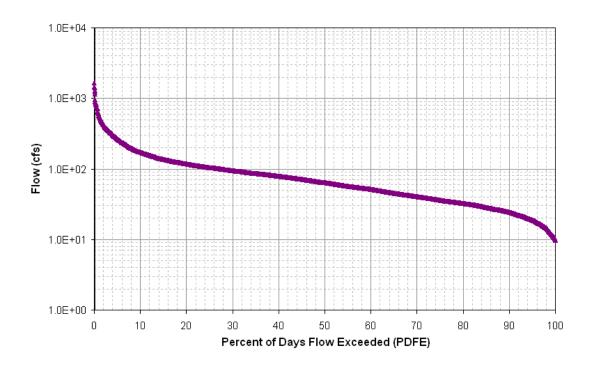


Figure C-1. Flow Duration Curve for Big Limestone Creek at Mile 0.5

Little Limestone Creek Load Duration Curve (2003-2004 Monitoring Data) Site: LLIME007.0WN

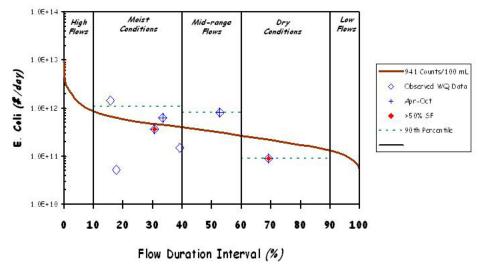


Figure C-2. E. Coli Load Duration Curve for Little Limestone Creek at Mile 7.0

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-9 of C-54

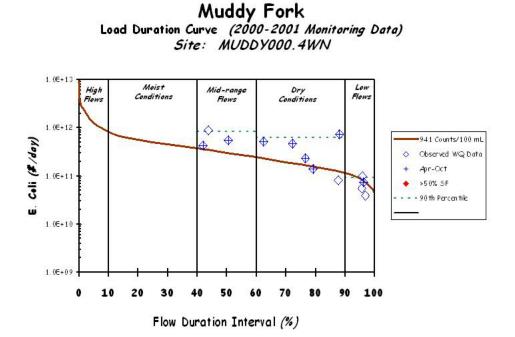


Figure C-3. E. Coli Load Duration Curve for Muddy Fork at Mile 0.4

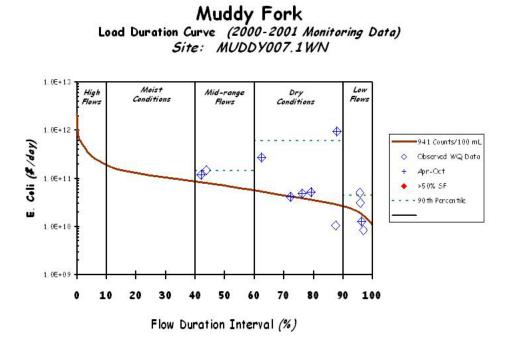


Figure C-4. E. Coli Load Duration Curve for Muddy Fork at Mile 7.1

C-9

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-10 of C-54

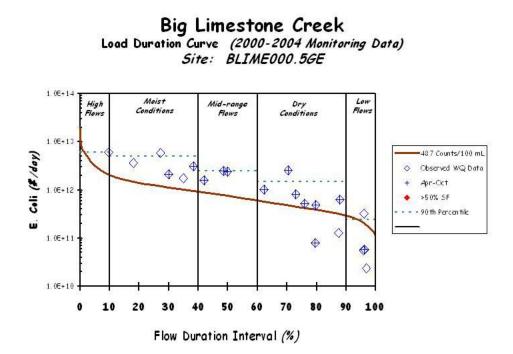


Figure C-5. E. Coli Load Duration Curve for Big Limestone Creek at Mile 0.5

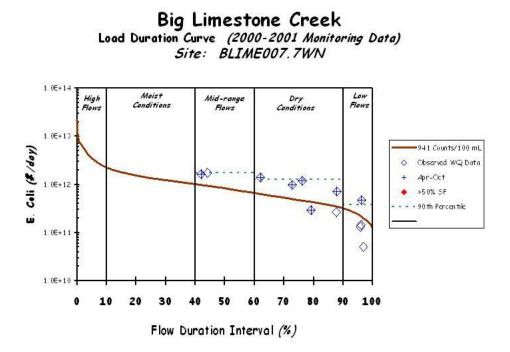


Figure C-6. E. Coli Load Duration Curve for Big Limestone Creek at Mile 7.7

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-11 of C-54

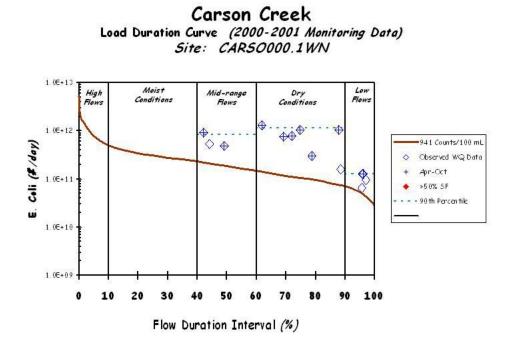


Figure C-7. E. Coli Load Duration Curve for Carson Creek at Mile 0.1

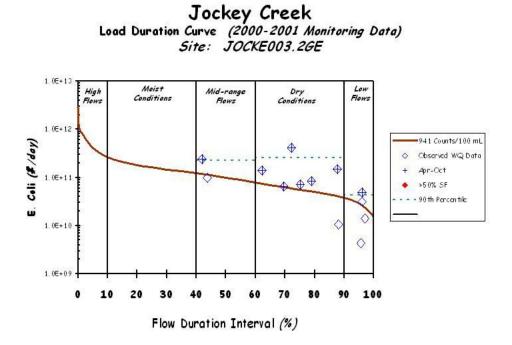


Figure C-8. E. Coli Load Duration Curve for Jockey Creek at Mile 3.2

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-12 of C-54

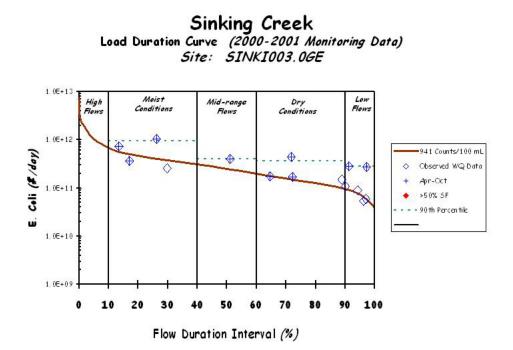


Figure C-9. E. Coli Load Duration Curve for Sinking Creek at Mile 3.0

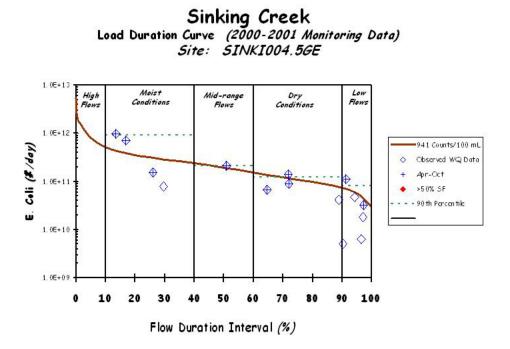


Figure C-10. E. Coli Load Duration Curve for Sinking Creek at Mile 4.5

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-13 of C-54

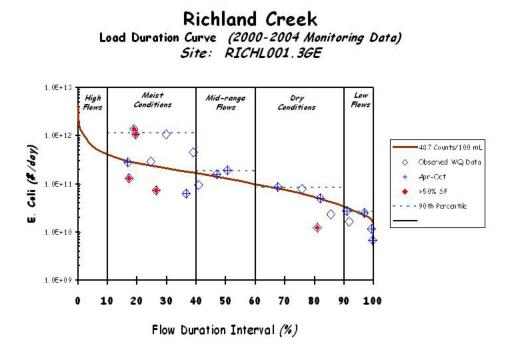


Figure C-11. E. Coli Load Duration Curve for Richland Creek at Mile 1.3

Figure C-12. E. Coli Load Duration Curve for Meadow Creek at Mile 0.4

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-14 of C-54



Figure C-13. E. Coli Load Duration Curve for Meadow Creek at Mile 2.7

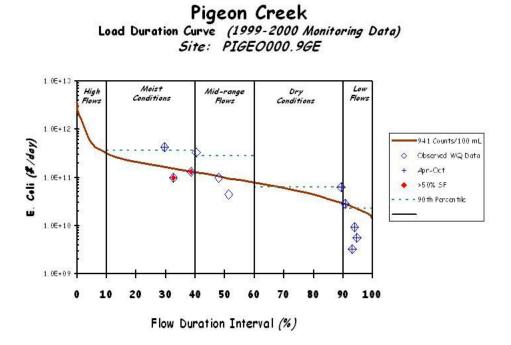


Figure C-14. E. Coli Load Duration Curve for Pigeon Creek at Mile 0.9

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-15 of C-54

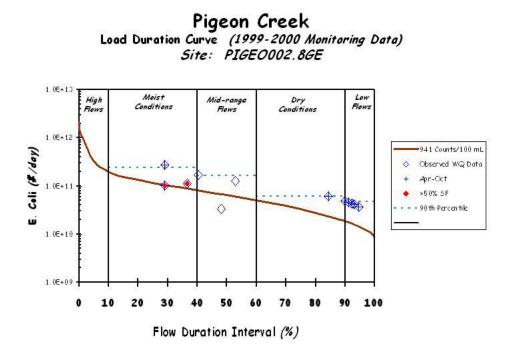


Figure C-15. E. Coli Load Duration Curve for Pigeon Creek at Mile 2.8

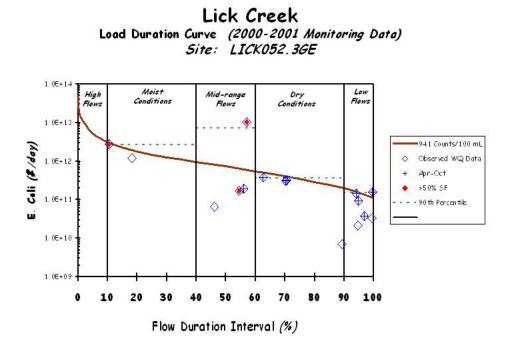


Figure C-16. E. Coli Load Duration Curve for Lick Creek at Mile 52.3

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-16 of C-54

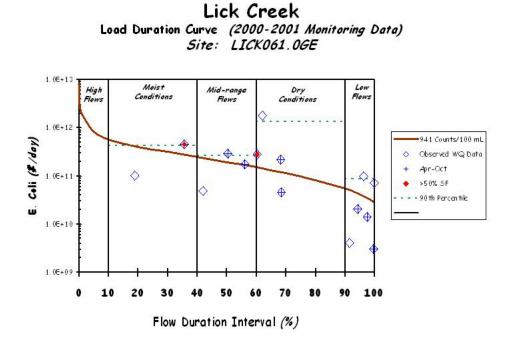


Figure C-17. E. Coli Load Duration Curve for Lick Creek at Mile 61.0

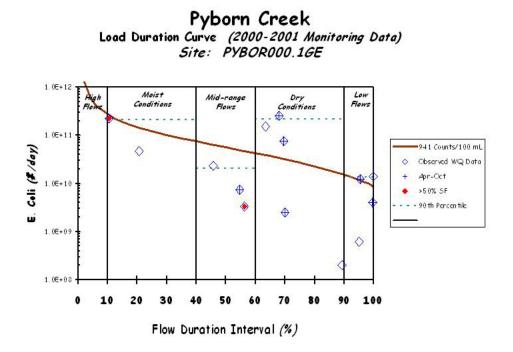


Figure C-18. E. Coli Load Duration Curve for Pyborn Creek at Mile 0.1

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-17 of C-54

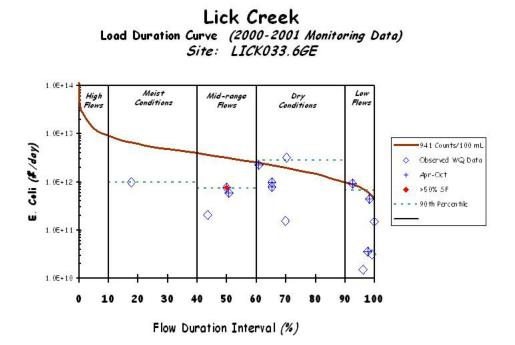


Figure C-19. E. Coli Load Duration Curve for Lick Creek at Mile 33.6

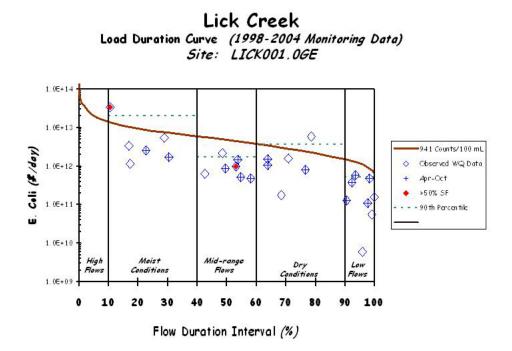


Figure C-20. E. Coli Load Duration Curve for Lick Creek at Mile 1.0

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-18 of C-54

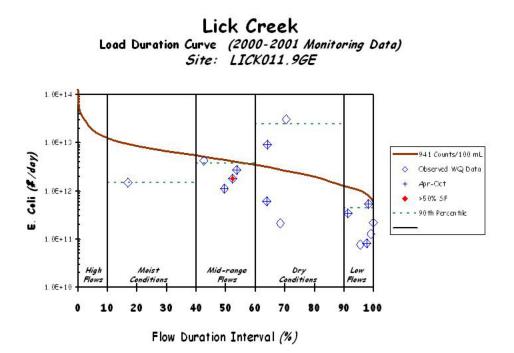


Figure C-21. E. Coli Load Duration Curve for Lick Creek at Mile 11.9

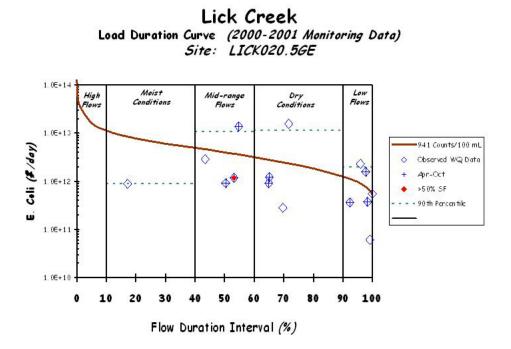


Figure C-22. E. Coli Load Duration Curve for Lick Creek at Mile 20.5

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-19 of C-54

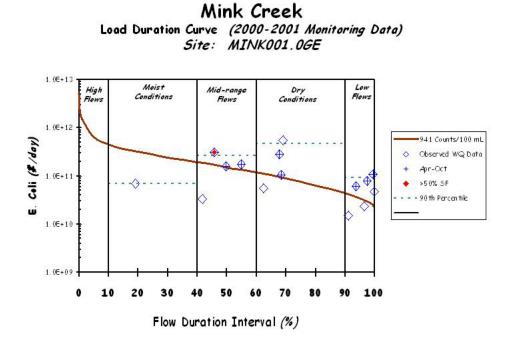


Figure C-23. E. Coli Load Duration Curve for Mink Creek at Mile 1.0

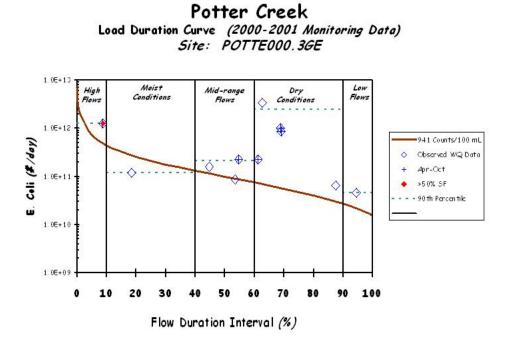


Figure C-24. E. Coli Load Duration Curve for Potter Creek at Mile 0.3

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-20 of C-54

	Table C-1. Required Load Reduction for Hommy Dranch – Mile 0.2					
				Required Reduction		
Sample	Flow	PDFE	Sample	Sample to	Sample to	
Date	1 10 W	IDIL	Concentration	Target	Target – MOS	
Date				(941 CFU/100 ml)	(847 CFU/100 ml)	
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]	
7/14/05			1553	39.4	45.5	
8/10/05			1553	39.4	45.5	
9/14/05			2280	58.7	62.9	
10/20/05			2500	62.4	66.1	
11/3/05			921	NR	8.0	
12/8/05			1553	39.4	45.5	
90 th Percentile Concentration		2390	60.6	64.6		

Table C-1. Required Load Reduction for Hominy Branch – Mile 0.2

Note: NR = No reduction required

^a Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

Reductions for individual samples (shaded area) are included for reference only.

				Required Reduction	
Sample	Flow	PDFE	Sample	Sample to	Sample to
Date	11000	TUTE	Concentration	Target	Target – MOS
Dute				(941 CFU/100 ml)	(847 CFU/100 ml)
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]
2/10/03	27.30	17.7%	78	NR	NR
7/16/03	20.58	30.6%	727	NR	NR
10/14/03	9.58	69.3%	387	NR	NR
1/20/04	17.83	39.3%	345	NR	NR
4/20/04	19.48	33.5%	1300	27.6	34.8
8/4/04	13.69	52.8%	2419	61.1	65.0
11/4/04	29.17	15.7%	1986	52.6	57.4
5/2/05			1120	16.0	24.4
8/2/05			1046	10.0	19.0
90 th Percentile Concentration		2073	54.6	59.1	

Table C-2. Required Load Reduction for Little Limestone Creek – Mile 7.0

Note: NR = No reduction required

Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-21 of C-54

Table 0-0: Required Eodd Reddetion for Entite Entrestone oreck – mile r					
				Required Reduction	
Sample	Flow	PDFE	Sample	Sample to	Sample to
Date	FIOW	FDFE	Concentration	Target	Target – MOS
Date				(941 CFU/100 ml)	(847 CFU/100 ml)
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]
7/14/05			92,080	99.0	99.1
8/10/05			23,590	96.0	96.4
9/14/05			770	NR	NR
90 th Percentile Concentration		78.382	98.8	98.9	

Table C-3. Required Load Reduction for Little Limestone Creek – Mile 7.7

Note: NR = No reduction required

^a Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

^b Reductions for individual samples (shaded area) are included for reference only.

Table C-4.	Required Load Reduction for Muddy Fork – Mile 0.4
	Required Load Reduction for Midduy Fork – whe 0.7

14610 0 11	Table 0-4. Required Load Reduction for Muddy Fork – Mile 0.4					
				Required Reduction		
Sample	Flow	PDFE	Sample	Sample to	Sample to	
Date	11000	IDIL	Concentration	Target	Target – MOS	
Date				(941 CFU/100 ml)	(847 CFU/100 ml)	
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]	
8/1/00	13.09	50.5%	1733	45.7	51.1	
8/22/00	7.23	76.6%	1300	27.6	34.8	
9/26/00	5.37	88.2%	5650	83.3	85.0	
10/17/00	3.51	96.5%	866	NR	2.2	
11/14/00	3.58	96.1%	1120	16.0	24.4	
12/12/00	3.29	97.1%	488	NR	NR	
1/17/01	3.65	95.8%	613	NR	NR	
2/13/01	5.40	87.9%	613	NR	NR	
3/13/01	15.10	43.9%	2419	61.1	65.0	
4/17/01	15.77	42.0%	1120	16.0	24.4	
5/8/01	7.92	72.3%	2400	60.8	64.7	
6/5/01	10.00	62.5%	2090	55.0	59.5	
10/24/01	6.83	79.2%	840	NR	NR	
7/14/05			3270	71.2	74.1	
8/10/05			5370	82.5	84.2	
9/14/05			1340	29.8	36.8	
90 th Percentile Concentration			4320	78.2	80.4	

Note: NR = No reduction required

^a Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-22 of C-54

Table C-5	Table C-5. Required Load Reduction for Muddy Fork – Mile 7.1				
				Required	Reduction
Sample	Flow	PDFE	Sample	Sample to	Sample to
Date	11000	TUTE	Concentration	Target	Target – MOS
Dute				(941 CFU/100 ml)	(847 CFU/100 ml)
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]
8/22/00	1.68	76.3%	1203	21.8	29.6
9/26/00	1.25	88.1%	30760	96.9	97.2
10/17/00	0.81	96.5%	649	NR	NR
11/14/00	0.83	96.0%	1553	39.4	45.5
12/12/00	0.76	97.1%	461	NR	NR
1/17/01	0.85	95.8%	2419	61.1	65.0
2/13/01	1.26	87.7%	345	NR	NR
3/13/01	3.52	43.8%	1733	45.7	51.1
4/17/01	3.66	42.1%	1340	29.8	36.8
5/8/01	1.84	72.4%	921	NR	8.0
6/5/01	2.32	62.6%	4870	80.7	82.6
10/24/01	1.58	79.2%	1340	29.8	36.8
90 th Percentile Concentration			4625	79.7	81.7

Table C-5 Required Load Reduction for Muddy Fork – Mile 7.1

NR = No reduction required Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days. Reductions for individual samples (shaded area) are included for reference only. Note:

b

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-23 of C-54

Table C-6.	Requ	Irea Load F	Reduction for Bi	g Limestone Cre	ek – Mile 0.5
				Required Reduction	
Sample	Flow	PDFE	Sample	Sample to	Sample to
Date	11000	I DI L	Concentration	Target	Target – MOS
Dute				(487 CFU/100 ml)	(438 CFU/100 ml)
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]
8/1/00	63.70	50.0%	1553	68.6	71.8%
8/22/00	35.04	76.1%	613	20.6	28.5%
9/26/00	25.97	88.1%	980	50.3	55.3%
10/17/00	16.89	96.4%	138	NR	NR
11/14/00	16.96	96.3%	770	36.8	43.1%
12/12/00	15.93	97.1%	61	NR	NR
1/17/01	17.41	96.1%	132	NR	NR
2/13/01	26.34	87.7%	199	NR	NR
3/31/01	174.28	9.8%	1414	65.6	69.0%
4/17/01	75.75	42.1%	866	43.8	49.4%
5/8/01	37.81	73.1%	866	43.8	49.4%
6/5/01	48.46	62.3%	860	43.4	49.1%
7/11/01	40.09	70.5%	2620	81.4	83.3%
10/24/01	32.69	79.6%	99	NR	NR
2/10/03	123.98	18.1%	1200	59.4	63.5%
7/16/03	80.88	38.5%	1553	68.6	71.8%
10/14/03	32.61	79.8%	613	20.6	28.5%
1/20/04	85.94	35.0%	816	40.3	46.3%
4/20/04	94.06	30.0%	921	47.1	52.4%
8/4/04	65.32	48.7%	1553	68.6	71.8%
11/4/04	99.56	27.3%	2419	79.9	81.9%
5/2/05			1414	65.6	69.0%
7/14/05			2419	79.9	81.9%
8/10/05			1310	62.8	66.6%
9/14/05			980	50.3	55.3%
10/20/05			1420	65.7	69.2%
12/8/05			387	NR	NR
	entile Cond	centration	1899	74.4	76.9

Table C-6 Required Load Reduction for Big Limestone Creek – Mile 0.5

Note:

NR = No reduction required Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-24 of C-54

	. neyu	neu Luau r	reduction for Di	g Limestone Cre	
	Flow	v PDFE		Required Reduction	
Sample			Sample	Sample to	Sample to
Date	11000	I DI L	Concentration	Target	Target – MOS
Dato				(941 CFU/100 ml)	(847 CFU/100 ml)
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]
8/22/00	19.96	76.3%	2419	61.1	65.0
9/26/00	14.81	88.1%	1986	52.6	57.4
10/17/00	9.67	96.4%	1986	52.6	57.4
11/14/00	9.73	96.3%	613	NR	NR
12/12/00	9.05	97.1%	228	NR	NR
1/17/01	9.95	96.1%	548	NR	NR
2/13/01	14.89	87.9%	727	NR	NR
3/13/01	41.22	44.2%	1733	45.7	51.1
4/17/01	43.20	42.1%	1553	39.4	45.5
5/8/01	21.63	72.9%	1890	50.2	55.2
6/5/01	27.68	62.2%	2060	54.3	58.9
10/24/01	18.72	79.3%	630	NR	NR
90 th Percentile Concentration		2053	54.2	58.7	

Table C-7. Required Load Reduction for Big Limestone Creek – Mile 7.7

Note: NR = No reduction required

^a Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-25 of C-54

Table C-0.	Table C-8. Required Load Reduction for Carson Creek – Mile 0.1				
				Required	Reduction
Sample	Flow	PDFE	Sample	Sample to	Sample to
Date	11000	I DI L	Concentration	Target	Target – MOS
Duto		50/3		(941 CFU/100 ml)	(847 CFU/100 ml)
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]
8/1/00	8.19	49.3%	2419	61.1	65.0
8/22/00	4.53	74.9%	9330	89.9	90.9
9/26/00	3.27	88.0%	13130	92.8	93.5
10/17/00	2.17	96.2%	2419	61.1	65.0
11/14/00	2.17	96.1%	2419	61.1	65.0
12/12/00	1.96	97.3%	1986	52.6	57.4
1/17/01	2.22	95.8%	1203	21.8	29.6
2/13/01	3.24	88.6%	1985	52.6	57.3
3/13/01	9.15	44.3%	2419	61.1	65.0
4/17/01	9.56	42.3%	3880	75.7	78.2
5/8/01	4.86	72.1%	6630	85.8	87.2
6/5/01	6.16	62.0%	8620	89.1	90.2
7/11/01	5.18	69.3%	5910	84.1	85.7
10/24/01	4.19	78.8%	2920	67.8	71.0
7/14/05			1930	51.2	56.1
8/10/05			1553	39.4	45.5
9/14/05			816	NR	NR
10/18/05			1414	33.5	40.1
10/20/05			1553	39.4	45.5
11/3/05			2160	56.4	60.8
12/8/05			2419	61.1	65.0
	entile Cond	centration	8620	89.1	90.2

Table C-8. Required Load Reduction for Carson Creek – Mile 0.1

Note: NR = No reduction required

Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-26 of C-54

	Table C-9. Required Load Reduction for Jockey Creek – Mile 3.2				
				Required Reduction	
Sample	Flow	PDFE	Sample	Sample to	Sample to
Date	11011	I DI L	Concentration	Target	Target – MOS
Date				(941 CFU/100 ml)	(847 CFU/100 ml)
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]
8/22/00	2.40	75.2%	1220	22.9	30.6
9/26/00	1.76	87.8%	3450	72.7	75.4
10/17/00	1.15	96.3%	1733	45.7	51.1
11/14/00	1.16	96.2%	1120	16.0	24.4
12/12/00	1.05	97.2%	548	NR	NR
1/17/01	1.18	95.8%	148	NR	NR
2/13/01	1.74	88.3%	248	NR	NR
3/13/01	4.92	43.9%	816	NR	NR
4/17/01	5.12	42.1%	1890	50.2	55.2
5/8/01	2.58	72.3%	6630	85.8	87.2
6/5/01	3.26	62.3%	1733	45.7	51.1
7/11/01	2.74	69.7%	980	4.0	13.6
10/24/01	2.22	79.0%	1553	39.4	45.5
90 th Percentile Concentration		3138	70.0	73.0	

Table C-9. Required Load Reduction for Jockey Creek – Mile 3.2

Note: NR = No reduction required

^a Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-27 of C-54

	on noqu		Table C-TU. Required Load Reduction for Sinking Creek – Mile 3.0						
			0	Required Reduction					
Sample	Flow	PDFE	Sample	Sample to	Sample to				
Date			Concentration	Target	Target – MOS				
Date				(941 CFU/100 ml)	(847 CFU/100 ml)				
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]				
8/2/00	10.65	51.1%	1553	39.4	45.5				
8/29/00	6.52	72.4%	1046	10.0	19.0				
9/19/00	3.87	91.4%	3010	68.7	71.9				
10/24/00	2.64	97.4%	4190	77.5	79.8				
11/28/00	2.85	96.5%	770	NR	NR				
12/14/00	2.66	97.3%	921	NR	8.0				
1/9/01	3.31	94.4%	1120	16.0	24.4				
2/5/01	4.32	89.1%	1414	33.5	40.1				
3/7/01	16.18	29.8%	649	NR	NR				
4/4/01	21.79	17.1%	687	NR	NR				
5/1/01	7.76	64.7%	921	NR	8.0				
5/29/01	17.51	26.3%	2419	61.1	65.0				
6/26/01	6.59	71.9%	2750	65.8	69.2				
8/22/01	24.58	13.6%	1203	21.8	29.6				
11/14/01	4.09	90.3%	1100	14.5	23.0				
7/14/05			2620	64.1	67.7				
8/10/05			2920	67.8	71.0				
9/14/05			3310	NR	NR				
90 th Perce	90 th Percentile Concentration 3100 69.7 72.7								

Table C-10. Required Load Reduction for Sinking Creek – Mile 3.0

Note: NR = No reduction required

^a Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-28 of C-54

	n noqu	Table C-11. Required Load Reduction for Sinking Creek – Mile 4.5					
				Required Reduction			
Sample	Flow	PDFE	Sample	Sample to	Sample to		
Date	11011	1012	Concentration	Target	Target – MOS		
- 0.10				(941 CFU/100 ml)	(847 CFU/100 ml)		
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]		
8/2/00	8.21	51.0%	1046	10.0	19.0		
8/29/00	5.03	72.2%	727	NR	NR		
9/19/00	2.98	91.4%	1553	39.4	45.5		
10/24/00	2.03	97.4%	649	NR	NR		
11/29/00	2.15	96.7%	121	NR	NR		
12/14/00	2.04	97.3%	365	NR	NR		
1/9/01	2.54	94.4%	770	NR	NR		
2/5/01	3.33	89.1%	515	NR	NR		
3/7/01	12.48	29.7%	260	NR	NR		
4/4/01	16.81	17.0%	1733	45.7	51.1		
5/1/01	5.97	64.7%	461	NR	NR		
5/29/01	13.54	26.0%	461	NR	NR		
6/26/01	5.07	71.9%	1120	16.0	24.4		
8/22/01	18.92	13.6%	2130	55.8	60.2		
11/14/01	3.15	90.4%	66	NR	NR		
90 th Perce	90 th Percentile Concentration			43.4	49.0		

Table C-11.	Required Load Reduction for Sinking Creek – Mile 4.5
	Required Eoud Reduction for Oniking Oreck – Mile 4.0

Note: NR = No reduction required

Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-29 of C-54

	Table C-12. Required Load Reduction for Richland Creek – Mile 1.3							
				Required Reduction				
Sample	Flow	PDFE	Sample	Sample to	Sample to			
Date	11000	IDIE	Concentration	Target	Target – MOS			
Dato				(487 CFU/100 ml)	(438 CFU/100 ml)			
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]			
8/2/00	2.75	91.0%	411	NR	NR			
8/29/00	1.88	97.0%	548	11.1	20.1			
9/19/00	1.48	99.5%	326	NR	NR			
10/24/00	1.41	99.9%	199	NR	NR			
11/29/00	4.38	81.0%	115	NR	NR			
12/14/00	23.73	19.0%	2419	79.9	81.9			
1/9/01	2.62	91.9%	260	NR	NR			
2/5/01	5.27	75.8%	613	20.6	28.5			
3/7/01	13.77	40.8%	285	285 NR				
4/4/01	15.03	36.6%	172	NR	NR			
5/1/01	6.88	67.7%	517	5.8	15.3			
5/29/01	11.80	47.0%	548	11.1	20.1			
6/26/01	23.44	19.6%	1850	73.7	76.3			
8/22/01	10.93	50.5%	727	33.0	39.8			
11/14/01	3.52	85.6%	272	NR	NR			
2/10/03	20.43	24.8%	579	15.9	24.4			
7/16/03	19.50	26.4%	155	NR	NR			
10/14/03	24.97	17.3%	214	NR	NR			
1/20/04	14.28	39.1%	1300	62.5	66.3			
4/28/04	25.36	16.9%	457	NR	NR			
8/4/04	4.18	82.1%	488	0.2	10.2			
11/4/04	17.85	29.9%	2419	79.9	81.9			
2/8/05			687	29.1	36.2			
5/3/05			290	NR	NR			
8/2/05			308	NR	NR			
90 th Perce	entile Cond	centration	1630	70.1	73.1			

 Table C-12.
 Required Load Reduction for Richland Creek – Mile 1.3

Note: NR = No reduction required

Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-30 of C-54

	#	PDFE		Required	Reduction
Sample	Flow		Sample	Sample to	Sample to
Date	11011	I DI L	Concentration	Target	Target – MOS
				(487 CFU/100 ml)	(438 CFU/100 ml)
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]
7/14/05			2820	82.7	84.5
8/10/05			8200	94.1	94.7
9/14/05			2400	79.7	81.8
10/20/05			129,970	99.6	99.7
11/3/05			10170	95.2	95.7
12/8/05			866	43.	49.4
90 th Perce	90 th Percentile Concentration			99.3	99.4

Table C-13. Required Load Reduction for Richland Creek – Mile 6.0

Note: NR = No reduction required

Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-31 of C-54

	Table C-14. Required Load Reduction for Meadow Creek – Mile 0.4							
				Required	Reduction			
Sample	Flow	PDFE	Sample	Sample to	Sample to			
Date		I DI L	Concentration	Target	Target – MOS			
Dute				(487 CFU/100 ml)	(438 CFU/100 ml)			
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]			
8/18/99	2.86	90.0%	770	36.8	43.1			
8/19/99	2.76	90.8%	816	40.3	46.3			
9/15/99	2.23	96.4%	1553	68.6	71.8			
9/16/99	2.31	95.2%	980	50.3	55.3			
10/13/99	2.48	93.0%	517	5.8	15.3			
10/14/99	2.52	92.8%	517	5.8	15.3			
2/28/00	14.95	38.6%	1986	75.5	77.9			
2/29/00	13.55	42.4%	2419	79.9	81.9			
3/27/00	14.33	40.1%	1300	62.5	66.3			
3/28/00	15.64	36.8%	1046	53.4	58.1			
4/24/00	13.96	41.2%	687	29.1	36.2			
4/25/00	24.16	23.4%	2419	79.9	81.9			
8/23/00	2.30	95.4%	613	20.6	28.5			
7/13/05			1300	62.5	66.3			
8/3/05			950	48.7	53.9			
9/7/05			1600	69.6	72.6			
10/4/05			435	NR	NR			
11/2/05			816	40.3	46.3			
90 th Perce	entile Cond	centration	2116	77.0	79.3			

 Table C-14.
 Required Load Reduction for Meadow Creek – Mile 0.4

Note: NR = No reduction required

^a Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-32 of C-54

Table C-15. Required Load Reduction for Meadow Creek – Mile 2.7							
				Required	Reduction		
Sample	Flow	PDFE	Sample	Sample to	Sample to		
Date	1100	I DI L	Concentration	Target	Target – MOS		
Duto				(487 CFU/100 ml)	(438 CFU/100 ml)		
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]		
8/18/99	2.86	90.0%	1733	71.9	74.7		
8/19/99	2.76	90.8%	1986	75.5	77.9		
9/15/99	2.23	96.4%	1733	71.9	74.7		
9/16/99	2.31	95.2%	1733	71.9	74.7		
10/13/99	2.48	93.0%	816	40.3	46.3		
10/14/99	2.52	92.8%	1120	56.5	60.9		
2/28/00	14.95	38.6%	1414	65.6	69.0		
2/29/00	13.55	42.4%	345	NR	NR		
3/27/00	14.33	40.1%	1414	65.6	69.0		
3/28/00	15.64	36.8%	1300	62.5	66.3		
4/24/00	13.96	41.2%	1733	71.9	74.7		
4/25/00	24.16	23.4%	2419	79.9	81.9		
7/13/05	2.30	95.4%	46110	98.9	99.1		
8/3/05			7710	93.7	94.3		
9/7/05			14390	96.6	97.0		
10/4/05			7630	93.6	94.3		
11/2/05			7330	93.4	94.0		
90 th Perce	entile Cond	centration	10,382	95.3	95.8		

 Table C-15.
 Required Load Reduction for Meadow Creek – Mile 2.7

Note: NR = No reduction required

^a Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-33 of C-54

	ol itoqu			geon creek – Mili	0.0.0	
		PDFE		Required	Reduction	
Sample	Flow		Sample	Sample to	Sample to	
Date	1 1000		Concentration	Target	Target – MOS	
Date				(941 CFU/100 ml)	(847 CFU/100 ml)	
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]	
8/18/99	1.31	89.5%	1986	52.6	57.4	
8/19/99	1.26	90.8%	921	NR	8.0	
9/15/99	1.04	94.0%	365	NR	NR	
9/16/99	0.97	94.9%	236	NR	NR	
10/14/99	1.11	93.2%	121	NR	NR	
2/28/00	4.58	48.0%	866	NR	2.2	
2/29/00	4.20	51.4%	435	NR	NR	
3/27/00	5.77	38.6%	921	NR	8.0	
3/28/00	5.54	40.4%	2419	61.1	65.0	
4/24/00	6.64	32.6%	613	NR	NR	
4/25/00	7.12	29.6%	2419	61.1	65.0	
7/13/05			276	NR	NR	
8/3/05			740	NR	NR	
9/7/05			4640	79.7	81.7	
10/4/05			579	NR	NR	
11/2/05			200	NR	NR	
90 th Percentile Concentration 2419 61.1 65.0						

 Table C-16.
 Required Load Reduction for Pigeon Creek – Mile 0.9

Note: NR = No reduction required

Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-34 of C-54

	Table C-17. Required Load Reduction for Figeon Creek – Mile 2.0							
				Required Reduction				
Sample	Flow	PDFE	Sample	Sample to	Sample to			
Date		TUTE	Concentration	Target	Target – MOS			
Date				(941 CFU/100 ml)	(847 CFU/100 ml)			
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]			
8/18/99	0.81	90.1%	2419	61.1	65.0			
8/19/99	0.78	91.2%	2419	61.1	65.0			
9/15/99	0.70	93.3%	2419	61.1	65.0			
9/16/99	0.61	94.8%	2419	61.1	65.0			
10/13/99	1.02	84.5%	2419	61.1	65.0			
10/14/99	0.73	92.5%	2419	61.1	65.0			
2/28/00	2.91	48.3%	461	NR	NR			
2/29/00	2.61	52.9%	1986	52.6	57.4			
3/27/00	3.84	36.6%	1203	21.8	29.6			
3/28/00	3.52	40.5%	1986	52.6	57.4			
4/24/00	4.58	29.1%	921	NR	8.0			
4/25/00	4.59	29.0%	2419	61.1	65.0			
7/13/05			3310	71.6	74.4			
8/3/05			3230	70.9	73.8			
9/7/05			1100	14.5	23.0			
10/4/05			1210	22.2	30.0			
11/2/05			365	NR	NR			
90 th Perce	90 th Percentile Concentration			65.7	69.1			

 Table C-17.
 Required Load Reduction for Pigeon Creek – Mile 2.8

Note: NR = No reduction required

^a Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-35 of C-54

	-				Reduction		Required	Reduction
Sample	Flow	PDFE	Sample	Sample to	Sample to	Geometric	Sample to	Sample to
Date	1 10 W	IDIL	Concentration	Target	Target – MOS	Mean ^a	Target	Target – MOS
Date				(487 CFU/100 ml)	(438 CFU/100 ml)		(126 CFU/100 ml)	(113 CFU/100 ml)
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]	[CFU/100 ml]	[%]	[%]
8/7/01	3090.39	17.4%	727	33.0	39.8			
8/15/01	11020.0	0.5%	1203	59.5	63.6			
8/21/01	5156.58	4.8%	57	NR	NR			
8/28/01	3263.44	14.9%	37	NR	NR			
9/6/01	2858.56	20.9%	345	NR	NR	229.5	45.1	50.8
9/11/01	2391.80	32.4%	55	NR	NR	136.9	8.0	17.5
9/18/01	1859.31	45.3%	36	NR	NR	67.9		
9/27/01	1720.98	47.8%	29	NR	NR	59.3		
10/4/01	1457.90	55.6%	42	NR	NR	60.8		
10/23/01	961.84	75.2%	9	NR	NR			
11/14/01	635.49	89.1%	1	NR	NR			
12/10/01	598.81	89.7%	19	NR	NR			
1/15/02	1074.05	69.6%	3	NR	NR			
2/26/02	1812.36	46.4%	1	NR	NR			
3/25/02	5422.17	4.2%	88	NR	NR			
5/7/02	1639.50	49.6%	34	NR	NR			
7/27/05			17	NR	NR			
90 th Perc	entile Conc	entration	498	2.2	12.0			

Table C-18. Required Load Reduction for Nolichucky River – Mile 5.3

Note: NR = No reduction required

^a Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-36 of C-54

				Required	Reduction		Required	Reduction
Sample Date	Flow	PDFE	Sample Concentration	Sample to Target (487 CFU/100 ml)	Sample to Target – MOS (438 CFU/100 ml)	Geometric Mean ^a	Sample to Target (126 CFU/100 ml)	Sample to Target – MOS (113 CFU/100 ml)
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]	[CFU/100 ml]	[%]	[%]
8/2/01	22.01	14.7%	2419	79.9	81.9			
8/7/01	9.45	36.8%	2419	79.9	81.9			
8/21/01	7.07	47.5%	2419	79.9	81.9			
8/28/01	5.16	58.9%	1733	71.9	74.7			
9/6/01	5.94	53.6%	1986	75.5	77.9			
9/11/01	4.94	60.2%	2419	79.9	81.9			
9/18/01	4.20	65.5%	1203	59.5	63.6	1891.7	93.3	94.0
9/27/01	4.71	61.6%	2419	79.9	81.9	1891.7	93.3	94.0
10/4/01	3.78	68.8%	1986	75.5	77.9	1944.0	93.5	94.2
10/23/01			2419	79.9	81.9			
8/4/05			579	15.9	24.4			
8/11/05			361	NR	NR			
8/16/05			488	0.2	10.2			
8/25/05			387	NR	NR			
9/6/05			411	NR	NR			
9/8/05			43	NR	NR			
9/14/05			345	NR	NR	258.4	51.2	56.3
9/21/05			461	NR	5.0	255.5	50.7	55.8
9/23/05			361	NR	NR	270.6	53.4	58.2
9/27/05			291	NR	NR	273.4	53.9	58.7
9/29/05			461	NR	5.0	280.4	55.1	59.7
10/3/05			1414	65.6	69.0	343.2	63.3	67.1
10/12/05			261	NR	NR	432.8	70.9	73.9
90 th Perce	entile Cond	centration	2419	79.9	81.9			

Table C-19. Required Load Reduction for Bent Creek – Mile 7.2

Note: NR = No reduction required

а Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days. Reductions for individual samples (shaded area) are included for reference only.

b

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-37 of C-54

				Required	Reduction		Required	Reduction
Sample	Flow	PDFE	Sample	Sample to	Sample to	Geometric	Sample to	Sample to
Date	1 10 10	IDIE	Concentration	Target	Target – MOS	Mean ^a	Target	Target – MOS
Duic				(941 CFU/100 ml)	(847 CFU/100 ml)		(126 CFU/100 ml)	(113 CFU/100 ml)
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]	[CFU/100 ml]	[%]	[%]
8/4/05			146	NR	NR			
8/11/05			1046	10.0	19.0			
8/16/05			517	NR	NR			
8/23/05			2419	61.1	65.0			
9/6/05			201	NR	NR			
9/8/05			142	NR	NR	518.1	75.7	78.2
9/14/05			7	NR	NR	190.3	33.8	40.6
9/21/05			34	NR	NR	110.4		
9/27/05			111	NR	NR	59.6		
9/29/05			210	NR	NR	73.6		
10/3/05			14	NR	NR	58.0		
10/12/05			14	NR	NR	32.1		
90 th Perce	entile Cond	centration	993	5.3	14.7			

Table C-20. Required Load Reduction for Mud Creek – Mile 0.4

Note: NR = No reduction required

^a Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-38 of C-54

								- · ··
					Reduction		Required	
Sample	Flow	PDFE	Sample	Sample to	Sample to	Geometric	Sample to	Sample to
Date			Concentration	Target	Target – MOS	Mean ^a	Target	Target – MOS
_ 0.10		F0/1		(941 CFU/100 ml)	(847 CFU/100 ml)		(126 CFU/100 ml)	(113 CFU/100 ml)
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]	[CFU/100 ml]	[%]	[%]
8/2/01	6.09	37.3%	1986	52.6	57.4			
8/7/01	3.28	60.5%	2419	61.1	65.0			
8/21/01	2.31	72.1%	1553	39.4	45.5			
8/28/01	1.86	80.0%	2419	61.1	65.0			
9/6/01	2.43	70.6%	2419	61.1	65.0			
9/11/01	2.20	74.0%	649	NR	NR	1701.6	92.6	93.4
9/18/01	1.95	78.5%	980	4.0	13.6	1420.3	91.1	92.0
9/27/01	2.51	69.7%	727	NR	NR	1220.3	89.7	90.7
10/1/01	2.26	72.9%	687	NR	NR	948.7	86.7	88.1
10/23/01	1.70	82.6%	548	NR	NR			
8/4/05			378	NR	NR			
8/11/05			225	NR	NR			
8/16/05			579	NR	NR			
8/23/05			921	NR	NR			
8/25/05			727	NR	NR	505.4	75.1	77.6
9/6/05			435	NR	NR	519.8	75.8	78.3
9/8/05			921	NR	NR	571.8	78.0	80.2
9/14/05			517	NR	NR	656.8	80.8	82.8
9/21/05			365	NR	NR	608.2	79.3	81.4
9/27/05			179	NR	NR	422.9	70.2	73.3
9/29/05			2419	61.1	65.0	565.6	77.7	80.0
10/3/05			488	NR	NR	553.8	77.2	79.6
10/12/05			345	NR	NR	489.5	74.3	76.9
90 th Perce	entile Con	centration	2419	61.1	65.0			

Table C-21. Required Load Reduction for Flat Creek – Mile 0.6

NR = No reduction required Note:

Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days. Reductions for individual samples (shaded area) are included for reference only. а

b

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-39 of C-54

	•			Required	Reduction		Required	Reduction
Sample	Flow	PDFE	Sample	Sample to	Sample to	Geometric	Sample to	Sample to
Date	11011		Concentration	Target	Target – MOS	Mean ^a	Target	Target – MOS
2 4.0				(941 CFU/100 ml)	(847 CFU/100 ml)		(126 CFU/100 ml)	(113 CFU/100 ml)
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]	[CFU/100 ml]	[%]	[%]
8/2/01	6.09	37.3%	613	NR	NR			
8/7/01	3.28	60.5%	727	NR	NR			
8/21/01	2.31	72.1%	435	NR	NR			
8/28/01	1.86	80.0%	2419	61.1	65.0			
9/6/01	2.43	70.6%	261	NR	NR			
9/11/01	2.20	74.0%	548	NR	NR			
9/18/01	1.95	78.5%	461	NR	NR	586.5	78.5	80.7
9/27/01	2.51	69.7%	150	NR	NR	474.0	73.4	76.2
10/4/01	2.26	72.9%	211	NR	NR			
10/23/01	1.70	82.6%	68	NR	NR			
8/11/05			411	NR	NR			
90 th Perce	entile Cond	centration	727	NR	NR			

Table C-22. Required Load Reduction for Long Creek – Mile 0.7

Note: NR = No reduction required

^a Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-40 of C-54

	Table C-23. Required Load Reduction for Lick Creek – Mile 52.3					
				Required	Reduction	
Sample	Flow	PDFE	Sample	Sample to	Sample to	
Date	1 10 W		Concentration	Target	Target – MOS	
Date				(941 CFU/100 ml)	(847 CFU/100 ml)	
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]	
8/14/00	6.86	94.3%	866	NR	2.2	
8/15/00	6.59	95.1%	579	NR	NR	
9/14/00	4.77	99.9%	1340	29.8	36.8	
10/10/00	6.16	97.0%	249	NR	NR	
11/7/00	4.84	99.7%	285	NR	NR	
12/5/00	6.64	94.8%	135	NR	NR	
1/4/01	8.94	89.5%	32	NR	NR	
1/30/01	27.67	54.6%	248	NR	NR	
2/28/01	84.37	18.4%	579	NR	NR	
3/27/01	35.51	46.2%	75	NR	NR	
4/24/01	26.62	56.2%	299	NR	NR	
5/22/01	131.15	10.6%	866	NR	2.2	
6/19/01	17.61	70.3%	727	NR	NR	
7/24/01	17.38	70.7%	770	NR	NR	
9/12/01	22.16	62.8%	687	NR	NR	
12/11/01	25.74	57.2%	16160	94.2	94.8	
7/20/05			1210	22.2	30.0	
8/17/05			630	NR	NR	
9/28/05			740	NR	NR	
10/25/05			579	NR	NR	
11/16/05			3500	73.1	75.8	
12/13/05			129	NR	NR	
90 th Percentile Concentration 1327 29.1 36						

Table C-23.	Required Load Reduction for Lick Creek – Mile 52.3

Note: NR = No reduction required

Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-41 of C-54

4. Requ	neu Luau I	Veduction for Li	CK Cleek - Mille C	01.0		
			Required	Reduction		
Flow	PDEE	Sample	Sample to	Sample to		
1 1000	IDIL	Concentration	Target	Target – MOS		
				(847 CFU/100 ml)		
[cfs]	[%]	[CFU/100 ml]	[%]	[%]		
1.85	94.5%	460	NR	2.2		
1.26	99.8%	100	NR	NR		
1.59	97.6%	365	NR	NR		
1.23	100.0%	2419	61.1	65.0		
1.67	96.5%	2419	61.1	65.0		
2.23	91.7%	75	NR	NR		
6.66	60.3%	1733	45.7	51.1		
18.14	18.9%	228	NR	NR		
10.32	42.0%	192	NR	NR		
8.32	50.4%	1414	33.5	40.1		
12.07	35.7%	1553	39.4	45.5		
5.23	68.4%	1710	45.0	50.5		
5.21	68.6%	365	NR	NR		
7.35	56.2%	980	NR	NR		
6.30	62.2%	11530	91.8	92.7		
		866	NR	2.2		
		291	NR	NR		
		308	NR	NR		
		461	NR	NR		
		1120	16.0	24.4		
		510	NR	NR		
12/13/05 510 NR NR 90 th Percentile Concentration 2419 61.1 65.0						
	Flow [cfs] 1.85 1.26 1.59 1.23 1.67 2.23 6.66 18.14 10.32 8.32 12.07 5.23 5.21 7.35 6.30	Flow PDFE [cfs] [%] 1.85 94.5% 1.26 99.8% 1.59 97.6% 1.23 100.0% 1.67 96.5% 2.23 91.7% 6.66 60.3% 18.14 18.9% 10.32 42.0% 8.32 50.4% 5.23 68.4% 5.21 68.6% 7.35 56.2% 6.30 62.2%	Flow PDFE Sample Concentration [cfs] [%] [CFU/100 ml] 1.85 94.5% 460 1.26 99.8% 100 1.59 97.6% 365 1.23 100.0% 2419 1.67 96.5% 2419 2.23 91.7% 75 6.66 60.3% 1733 18.14 18.9% 228 10.32 42.0% 192 8.32 50.4% 1414 12.07 35.7% 1553 5.23 68.4% 1710 5.21 68.6% 365 7.35 56.2% 980 6.30 62.2% 11530 866 291 308 461 1120 510 entile Concentration 2419	Flow PDFE Sample Concentration Required Sample to Target (941 CFU/100 ml) [cfs] [%] [CFU/100 ml] [%] 1.85 94.5% 460 NR 1.26 99.8% 100 NR 1.29 97.6% 365 NR 1.23 100.0% 2419 61.1 1.67 96.5% 2419 61.1 2.23 91.7% 75 NR 6.66 60.3% 1733 45.7 18.14 18.9% 228 NR 10.32 42.0% 192 NR 8.32 50.4% 1414 33.5 12.07 35.7% 1553 39.4 5.23 68.4% 1710 45.0 5.21 68.6% 365 NR 6.30 62.2% 11530 91.8 291 NR 308 NR 291 NR 308 NR 308 NR 1120		

 Table C-24.
 Required Load Reduction for Lick Creek – Mile 61.0

Note: NR = No reduction required

Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-42 of C-54

	<u>o. ne</u> qu	neu Loau i	<u>veuuciion io</u> n i y	Donn Creek - Mil	
	-			Required Reduction	
Samplo	Flow	PDFE	Sample	Sample to	Sample to
Sample Date	11000	FDIL	Concentration	Target	Target – MOS
Date				(941 CFU/100 ml)	(847 CFU/100 ml)
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]
8/15/00	0.51	95.6%	980	4.0	13.6
9/14/00	0.38	99.8%	435	NR	NR
11/7/00	0.36	100.0%	1553	39.4	45.5
12/5/00	0.51	95.3%	49	NR	NR
1/4/01	0.68	89.5%	12	NR	NR
1/30/01	2.05	56.3%	66	NR	NR
2/28/01	6.28	20.7%	308	NR	NR
3/27/01	2.79	45.8%	345	NR	NR
4/24/01	2.13	54.7%	144	NR	NR
5/22/01	11.38	10.5%	816	NR	NR
6/19/01	1.39	69.8%	2230	57.8	62.0
7/24/01	1.36	70.2%	76	NR	NR
9/22/01	1.46	68.1%	7170	86.9	88.2
12/11/01	1.69	63.5%	3680	74.4	77.0
7/20/05			7120	86.8	88.1
8/17/05			1300	27.6	34.8
9/28/05			310	NR	NR
90 th Perce	entile Con	centration	5056	81.4	83.3

 Table C-25.
 Required Load Reduction for Pyborn Creek – Mile 0.1

Note: NR = No reduction required

^a Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-43 of C-54

o. Requ	neu Luau i	Veduction for Liv	CK Oleek - Mille J		
			Required Reduction		
Flow	PDEE	Sample	Sample to	Sample to	
1 1000	IDIL	Concentration	Target	Target – MOS	
			· · · · · · · · · · · · · · · · · · ·	(847 CFU/100 ml)	
[cfs]	[%]	[CFU/100 ml]	[%]	[%]	
38.20	92.6%	980	4.0	13.6	
25.04	98.4%	730	NR	NR	
26.29	97.8%	55	NR	NR	
18.50	100.0%	326	NR	NR	
22.68	99.2%	56	NR	NR	
31.24	96.2%	20	NR	NR	
85.25	69.9%	74	NR	NR	
285.52	17.7%	142	NR	NR	
158.41	43.7%	53	NR	NR	
136.17	50.8%	179	NR	NR	
138.54	50.0%	225	NR	NR	
97.29	65.3%	326	NR	NR	
96.80	65.4%	410	NR	NR	
108.17	60.9%	860	NR	1.5	
84.00	70.4%	1553	39.4	45.5	
		3310	71.6	74.4	
		1600	41.2	47.1	
		124	NR	NR	
		200	NR	NR	
		1100	14.5	23.0	
		154	NR	NR	
	Flow [cfs] 38.20 25.04 26.29 18.50 22.68 31.24 85.25 285.52 158.41 136.17 138.54 97.29 96.80 108.17 84.00	Flow PDFE [cfs] [%] 38.20 92.6% 25.04 98.4% 26.29 97.8% 18.50 100.0% 22.68 99.2% 31.24 96.2% 85.25 69.9% 285.52 17.7% 158.41 43.7% 136.17 50.8% 96.80 65.4% 108.17 60.9% 84.00 70.4%	Flow PDFE Sample Concentration [cfs] [%] [CFU/100 ml] 38.20 92.6% 980 25.04 98.4% 730 26.29 97.8% 55 18.50 100.0% 326 22.68 99.2% 56 31.24 96.2% 20 85.25 69.9% 74 285.52 17.7% 142 158.41 43.7% 53 136.17 50.8% 179 138.54 50.0% 225 97.29 65.3% 326 96.80 65.4% 410 108.17 60.9% 860 84.00 70.4% 1553 3310 1600 124 200 124 200 1100 154 154	Flow PDFE Sample Concentration Required Sample to Target (941 CFU/100 ml) [cfs] [%] [CFU/100 ml] [%] 38.20 92.6% 980 4.0 25.04 98.4% 730 NR 26.29 97.8% 55 NR 18.50 100.0% 326 NR 22.68 99.2% 56 NR 31.24 96.2% 20 NR 35.25 69.9% 74 NR 285.52 17.7% 142 NR 136.17 50.8% 179 NR 138.54 50.0% 225 NR 97.29 65.3% 326 NR 96.80 65.4% 410 NR 108.17 60.9% 360 NR 96.80 65.4% 410 NR 84.00 70.4% 1553 39.4 3310 71.6 1600 41.2 124 NR 200 </td	

 Table C-26.
 Required Load Reduction for Lick Creek – Mile 33.6

Note: NR = No reduction required

Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-44 of C-54

	7. 1.0qu				N.2
				Required Reduction	
Sample	Flow	PDFE	Sample	Sample to	Sample to
Date	1 10 W	IDIL	Concentration	Target	Target – MOS
Date				(941 CFU/100 ml)	(847 CFU/100 ml)
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]
8/15/00			548	NR	NR
7/20/05			1430	34.2	40.8
8/17/05			520	NR	NR
9/28/05			328	NR	NR
10/25/05			410	NR	NR
11/16/05			2330	59.6	63.6
12/13/05			300	NR	NR
90 th Perce	90 th Percentile Concentration 1790 47.4 52.7				

Table C-27 Required Load Reduction for Lick Creek – Mile 45.2

Note: NR = No reduction required

Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

b Reductions for individual samples (shaded area) are included for reference only.

Table C-28.	Required Load I	Reduction for Puncheon Camp Creek – Mile 0.5
		Required Reduction

				Required Reduction	
Sample	Flow	PDFE	Sample	Sample to	Sample to
Date	11000	IDIL	Concentration	Target	Target – MOS
Date				(941 CFU/100 ml)	(847 CFU/100 ml)
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]
8/15/00			816	NR	NR
7/20/05			1480	36.4	42.8
8/17/05			201	NR	NR
12/13/05			410	NR	NR
90 th Percentile Concentration		1281	26.5	33.9	

NR = No reduction required Note:

Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-45 of C-54

Sample Date Flow Flow PDFE Sample Concentration Sample to Sample to (941 CFU/100 ml) Sample to Target – MOS (847 CFU/100 ml) 12/15/98 586.89 10.6% 2419 61.1 65.0 97/99 64.27 90.7% 83 NR NR 2/17/00 216.63 48.6% 4111 NR NR 5/11/00 189.31 54.7% 1114 NR NR 8/17/00 55.88 93.7% 4355 NR NR 8/17/00 54.88 93.7% 4355 NR NR 10/10/00 40.19 97.9% 1100 NR NR 11/1/00 28.47 100.0% 228 NR 5.0 12/5/00 34.88 99.2% 655 NR NR 1/4/01 48.67 96.1% 5 NR NR 2/28/01 452.04 16.9% 310 NR NR 5/22/01 195.59 53.1% 206 NR	Table C-2	.s. Requ	ITEU LUAU r		CK Creek – Mile 1	
Sample Date Flow PDFE [%] Concentration Target (941 CFU/100 ml) Target (941 CFU/100 ml) 12/15/98 586.89 10.6% 2419 61.1 65.0 9/7/99 64.27 90.7% 83 NR NR 2/17/00 216.63 48.6% 4111 NR NR 5/11/00 189.31 54.7% 1114 NR NR 8/15/00 59.00 92.5% 260 NR NR 8/17/00 55.88 93.7% 4355 NR NR 9/14/00 38.77 98.4% 510 NR NR 10/10/00 40.19 97.9% 110 NR NR 11/7/00 28.47 100.0% 228 NR 5.0 12/5/00 34.88 99.2% 655 NR NR 1/30/01 131.97 68.5% 55 NR NR 2/28/01 452.04 1667 NR NR 5/22/01 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Date Concentration Target (941 CFU100 m) Target (941 CFU100 m) Target (941 CFU100 m) 12/15/98 586.89 10.6% 2419 61.1 65.0 9/7/99 64.27 90.7% 83 NR NR 2/17/00 216.63 48.6% 411 NR NR 2/17/00 189.31 54.7% 114 NR NR 8/15/00 59.00 92.5% 260 NR NR 8/17/00 38.77 98.4% 510 NR NR 9/14/00 38.77 98.4% 510 NR NR 10/10/00 40.19 97.9% 110 NR NR 11/7/00 28.47 100.0% 228 NR 5.0 11/4/01 48.67 96.1% 5 NR NR 1/2/5/00 34.88 99.2% 655 NR NR 1/2/2/01 131.97 68.5% 55 NR NR 1/2/2/01 <td>Sample</td> <td>Flow</td> <td>PDFE</td> <td>-</td> <td></td> <td></td>	Sample	Flow	PDFE	-		
[cfs] [%] [CFU/100 m] [%] [%] 12/15/98 586.89 10.6% 2419 61.1 65.0 9/7/99 64.27 90.7% 83 NR NR 2/17/00 216.63 48.6% 411 NR NR 5/11/00 189.31 54.7% 114 NR NR 5/11/00 59.00 92.5% 260 NR NR 8/15/00 59.00 92.5% 260 NR NR 8/17/00 55.88 93.7% 435 NR NR 9/14/00 38.77 98.4% 510 NR NR 10/10/00 40.19 97.9% 110 NR NR 11/7/00 28.47 100.0% 228 NR S.0 12/5/00 34.88 99.2% 65 NR NR 1/30/01 131.97 68.5% 55 NR NR 2/28/01 452.04 16.9%	•			Concentration		Target – MOS
12/15/98 586.89 10.6% 2419 61.1 65.0 9/7/99 64.27 90.7% 83 NR NR 2/17/00 216.63 48.6% 411 NR NR 5/11/00 189.31 54.7% 114 NR NR 8/15/00 59.00 92.5% 260 NR NR 8/17/00 55.88 93.7% 435 NR NR 9/14/00 38.77 98.4% 510 NR NR 10/10/00 40.19 97.9% 110 NR NR 11/7/00 28.47 100.0% 228 NR 5.0 12/5/00 34.88 99.2% 65 NR NR 1/4/01 48.67 96.1% 5 NR NR 1/30/01 131.97 68.5% 55 NR NR 3/27/01 247.33 42.6% 167 NR NR 5/22/01 195.59 53.1		[ofo]	F0/ 1			
9/7/99 64.27 90.7% 83 NR NR 2/17/00 216.63 48.6% 411 NR NR 5/11/00 189.31 54.7% 114 NR NR 8/15/00 59.00 92.5% 260 NR NR 8/17/00 55.88 93.7% 435 NR NR 9/14/00 38.77 98.4% 510 NR NR 10/10/00 40.19 97.9% 110 NR NR 10/10/00 40.19 97.9% 110 NR NR 11/7/00 28.47 100.0% 228 NR S.0 12/5/00 34.88 99.2% 65 NR NR 1/4/01 48.67 96.1% 5 NR NR 1/30/01 131.97 68.5% 55 NR NR 2/28/01 424.6% 104 NR NR S 5/22/01 195.59 53.1%	40/45/00			• •		
2/17/00 216.63 48.6% 411 NR NR 5/11/00 189.31 54.7% 114 NR NR 8/15/00 59.00 92.5% 260 NR NR 8/17/00 55.88 93.7% 435 NR NR 9/14/00 38.77 98.4% 510 NR NR 10/10/00 40.19 97.9% 110 NR NR 10/10/00 40.19 97.9% 110 NR NR 11/7/00 28.47 100.0% 228 NR 5.0 12/5/00 34.88 99.2% 65 NR NR 1/4/01 48.67 96.1% 5 NR NR 1/30/01 131.97 68.5% 55 NR NR 2/28/01 452.04 16.9% 310 NR NR 3/27/01 247.33 42.6% 104 NR NR 5/22/01 195.59 53.1% </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
5/11/00 189.31 54.7% 114 NR NR 8/15/00 59.00 92.5% 260 NR NR 8/17/00 55.88 93.7% 435 NR NR 9/14/00 38.77 98.4% 510 NR NR 9/14/00 38.77 98.4% 510 NR NR 10/10/00 40.19 97.9% 110 NR NR 11/7/00 28.47 100.0% 228 NR 5.0 12/5/00 34.88 99.2% 655 NR NR 1/4/01 48.67 96.1% 5 NR NR 1/30/01 131.97 68.5% 55 NR NR 2/28/01 452.04 16.9% 310 NR NR 3/27/01 247.33 42.6% 167 NR NR 5/22/01 195.59 53.1% 206 NR NR 5/22/01 192.64 53.8% </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
8/15/00 59.00 92.5% 260 NR NR 8/17/00 55.88 93.7% 435 NR NR 9/14/00 38.77 98.4% 510 NR NR 10/10/00 40.19 97.9% 110 NR NR 11/7/00 28.47 100.0% 228 NR 5.0 12/5/00 34.88 99.2% 65 NR NR 1/4/01 48.67 96.1% 5 NR NR 1/3/01 131.97 68.5% 55 NR NR 2/28/01 452.04 16.9% 310 NR NR 3/27/01 247.33 42.6% 104 NR NR 5/22/01 195.59 53.1% 206 NR NR 6/19/01 150.99 63.9% 285 NR NR 7/24/01 190.68 64.0% 410 NR NR 9/12/01 192.64 53.8% <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
8/17/00 55.88 93.7% 435 NR NR 9/14/00 38.77 98.4% 510 NR NR 10/10/00 40.19 97.9% 110 NR NR 11/7/00 28.47 100.0% 228 NR 5.0 12/5/00 34.88 99.2% 65 NR NR 1/4/01 48.67 96.1% 5 NR NR 1/4/01 48.67 96.1% 5 NR NR 2/28/01 452.04 16.9% 310 NR NR 3/27/01 247.33 42.6% 104 NR NR 4/24/01 211.94 49.6% 167 NR NR 5/22/01 195.59 53.1% 206 NR NR 6/19/01 150.99 63.9% 285 NR NR 9/12/01 192.64 53.8% 307 NR NR 12/11/01 123.52 71.0% <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
9/14/00 38.77 98.4% 510 NR NR 10/10/00 40.19 97.9% 110 NR NR 11/7/00 28.47 100.0% 228 NR 5.0 12/5/00 34.88 99.2% 65 NR NR 1/4/01 48.67 96.1% 5 NR NR 1/30/01 131.97 68.5% 55 NR NR 2/28/01 452.04 16.9% 310 NR NR 3/27/01 247.33 42.6% 104 NR NR 4/24/01 211.94 49.6% 167 NR NR 5/22/01 195.59 53.1% 206 NR NR 6/19/01 150.99 63.9% 285 NR NR 9/12/01 192.64 53.8% 307 NR NR 12/10/03 445.50 17.3% 105 NR NR 12/10/03 318.72 30.	8/15/00	59.00	92.5%	260	NR	NR
10/10/00 40.19 97.9% 110 NR NR 11/7/00 28.47 100.0% 228 NR 5.0 12/5/00 34.88 99.2% 65 NR NR 1/4/01 48.67 96.1% 5 NR NR 1/30/01 131.97 68.5% 55 NR NR 2/28/01 452.04 16.9% 310 NR NR 3/27/01 247.33 42.6% 104 NR NR 4/24/01 211.94 49.6% 167 NR NR 6/19/01 150.99 63.9% 285 NR NR 7/24/01 150.68 64.0% 410 NR NR 9/12/01 192.64 53.8% 307 NR NR 12/11/01 123.52 71.0% 520 NR NR 12/10/03 3445.50 17.3% 105 NR NR 1/20/04 329.80 2	8/17/00	55.88	93.7%	435	NR	NR
11/7/00 28.47 100.0% 228 NR 5.0 12/5/00 34.88 99.2% 65 NR NR 1/4/01 48.67 96.1% 5 NR NR 1/30/01 131.97 68.5% 55 NR NR 2/28/01 452.04 16.9% 310 NR NR 3/27/01 247.33 42.6% 104 NR NR 4/24/01 211.94 49.6% 167 NR NR 5/22/01 195.59 53.1% 206 NR NR 6/19/01 150.99 63.9% 285 NR NR 9/12/01 192.64 53.8% 307 NR NR 12/11/01 123.52 71.0% 520 NR NR 2/10/03 445.50 17.3% 105 NR NR 1/2/10/03 318.72 30.4% 219 NR NR 1/2/10/04 329.80 <td< td=""><td>9/14/00</td><td>38.77</td><td>98.4%</td><td>510</td><td>NR</td><td>NR</td></td<>	9/14/00	38.77	98.4%	510	NR	NR
12/5/00 34.88 99.2% 65 NR NR 1/4/01 48.67 96.1% 5 NR NR 1/30/01 131.97 68.5% 55 NR NR 2/28/01 452.04 16.9% 310 NR NR 3/27/01 247.33 42.6% 104 NR NR 4/24/01 211.94 49.6% 167 NR NR 5/22/01 195.59 53.1% 206 NR NR 6/19/01 150.99 63.9% 285 NR NR 7/24/01 150.68 64.0% 410 NR NR 9/12/01 192.64 53.8% 307 NR NR 12/11/01 123.52 71.0% 520 NR NR 2/10/03 445.50 17.3% 105 NR NR 1/2/10/03 318.72 30.4% 219 NR NR 1/2/0/04 381.14 2	10/10/00	40.19	97.9%	110	NR	NR
1/4/01 48.67 96.1% 5 NR NR 1/30/01 131.97 68.5% 55 NR NR 2/28/01 452.04 16.9% 310 NR NR 3/27/01 247.33 42.6% 104 NR NR 4/24/01 211.94 49.6% 167 NR NR 5/22/01 195.59 53.1% 206 NR NR 6/19/01 150.99 63.9% 285 NR NR 7/24/01 150.68 64.0% 410 NR NR 9/12/01 192.64 53.8% 307 NR NR 12/11/01 123.52 71.0% 520 NR NR 12/11/01 123.52 71.0% 520 NR NR 12/11/01 123.52 71.0% 105 NR NR 11/10/03 318.72 30.4% 219 NR NR 11/2/04 329.80 <td< td=""><td>11/7/00</td><td>28.47</td><td>100.0%</td><td>228</td><td>NR</td><td>5.0</td></td<>	11/7/00	28.47	100.0%	228	NR	5.0
1/30/01 131.97 68.5% 55 NR NR 2/28/01 452.04 16.9% 310 NR NR 3/27/01 247.33 42.6% 104 NR NR 4/24/01 211.94 49.6% 167 NR NR 5/22/01 195.59 53.1% 206 NR NR 6/19/01 150.99 63.9% 285 NR NR 7/24/01 150.68 64.0% 410 NR NR 9/12/01 192.64 53.8% 307 NR NR 12/11/01 123.52 71.0% 520 NR NR 12/11/01 123.52 71.0% 520 NR NR 12/11/01 123.52 71.0% 520 NR NR 1/2/01/3 318.72 30.4% 219 NR NR 1/2/03 318.72 30.4% 219 NR NR 1/2/04 381.14 <	12/5/00	34.88	99.2%	65	NR	NR
2/28/01 452.04 16.9% 310 NR NR 3/27/01 247.33 42.6% 104 NR NR 4/24/01 211.94 49.6% 167 NR NR 5/22/01 195.59 53.1% 206 NR NR 6/19/01 150.99 63.9% 285 NR NR 7/24/01 150.68 64.0% 410 NR NR 9/12/01 192.64 53.8% 307 NR NR 12/11/01 123.52 71.0% 520 NR NR 2/10/03 445.50 17.3% 105 NR NR 2/10/03 318.72 30.4% 219 NR NR 10/14/03 174.66 58.1% 112 NR NR 1/20/04 329.80 28.8% 687 NR NR 4/20/04 381.14 22.8% 272 NR NR 1/2/04 381.14 <	1/4/01	48.67	96.1%	5	NR	NR
3/27/01 247.33 42.6% 104 NR NR 4/24/01 211.94 49.6% 167 NR NR 5/22/01 195.59 53.1% 206 NR NR 6/19/01 150.99 63.9% 285 NR NR 7/24/01 150.68 64.0% 410 NR NR 9/12/01 192.64 53.8% 307 NR NR 2/10/03 445.50 17.3% 105 NR NR 2/10/03 445.50 17.3% 105 NR NR 10/14/03 174.66 58.1% 112 NR NR 1/20/04 329.80 28.8% 687 NR NR 1/20/04 381.14 22.8% 272 NR NR 4/20/04 381.14 22.8% 272 NR NR 11/4/04 99.56 78.7% 2419 61.1 65.0 2/8/05	1/30/01	131.97	68.5%	55	NR	NR
4/24/01 211.94 49.6% 167 NR NR 5/22/01 195.59 53.1% 206 NR NR 6/19/01 150.99 63.9% 285 NR NR 7/24/01 150.68 64.0% 410 NR NR 9/12/01 192.64 53.8% 307 NR NR 12/11/01 123.52 71.0% 520 NR NR 2/10/03 445.50 17.3% 105 NR NR 10/14/03 318.72 30.4% 219 NR NR 10/14/03 174.66 58.1% 112 NR NR 1/20/04 329.80 28.8% 687 NR NR 4/20/04 381.14 22.8% 272 NR NR 1/20/04 381.14 22.8% 272 NR NR 11/4/04 99.56 78.7% 2419 61.1 65.0 2/8/05 <t< td=""><td>2/28/01</td><td>452.04</td><td>16.9%</td><td>310</td><td>NR</td><td>NR</td></t<>	2/28/01	452.04	16.9%	310	NR	NR
5/22/01 195.59 53.1% 206 NR NR 6/19/01 150.99 63.9% 285 NR NR 7/24/01 150.68 64.0% 410 NR NR 9/12/01 192.64 53.8% 307 NR NR 9/12/01 192.64 53.8% 307 NR NR 12/11/01 123.52 71.0% 520 NR NR 2/10/03 445.50 17.3% 105 NR NR 7/16/03 318.72 30.4% 219 NR NR 10/14/03 174.66 58.1% 112 NR NR 1/20/04 329.80 28.8% 687 NR NR 4/20/04 381.14 22.8% 272 NR NR 8/4/04 105.72 76.6% 308 NR NR 11/4/04 99.56 78.7% 2419 61.1 65.0 2/8/05	3/27/01	247.33	42.6%	104	NR	NR
6/19/01 150.99 63.9% 285 NR NR 7/24/01 150.68 64.0% 410 NR NR 9/12/01 192.64 53.8% 307 NR NR 12/11/01 123.52 71.0% 520 NR NR 2/10/03 445.50 17.3% 105 NR NR 7/16/03 318.72 30.4% 219 NR NR 10/14/03 174.66 58.1% 112 NR NR 1/20/04 329.80 28.8% 687 NR NR 4/20/04 381.14 22.8% 272 NR NR 4/20/04 381.14 22.8% 272 NR NR 8/4/04 105.72 76.6% 308 NR NR 11/4/04 99.56 78.7% 2419 61.1 65.0 2/8/05 40 NR NR 5/2/05 630 NR	4/24/01	211.94	49.6%	167	NR	NR
6/19/01 150.99 63.9% 285 NR NR 7/24/01 150.68 64.0% 410 NR NR 9/12/01 192.64 53.8% 307 NR NR 12/11/01 123.52 71.0% 520 NR NR 2/10/03 445.50 17.3% 105 NR NR 7/16/03 318.72 30.4% 219 NR NR 10/14/03 174.66 58.1% 112 NR NR 1/20/04 329.80 28.8% 687 NR NR 4/20/04 381.14 22.8% 272 NR NR 4/20/04 381.14 22.8% 272 NR NR 8/4/04 105.72 76.6% 308 NR NR 11/4/04 99.56 78.7% 2419 61.1 65.0 2/8/05 40 NR NR 5/2/05 630 NR	5/22/01	195.59	53.1%	206	NR	NR
7/24/01 150.68 64.0% 410 NR NR 9/12/01 192.64 53.8% 307 NR NR 12/11/01 123.52 71.0% 520 NR NR 2/10/03 445.50 17.3% 105 NR NR 2/10/03 445.50 17.3% 105 NR NR 7/16/03 318.72 30.4% 219 NR NR 10/14/03 174.66 58.1% 112 NR NR 1/20/04 329.80 28.8% 687 NR NR 4/20/04 381.14 22.8% 272 NR NR 4/20/04 381.14 22.8% 272 NR NR 11/4/04 99.56 78.7% 2419 61.1 65.0 2/8/05 40 NR NR NR 5/2/05 344 NR NR NR 9/28/05 520 NR NR NR				285	NR	NR
9/12/01 192.64 53.8% 307 NR NR 12/11/01 123.52 71.0% 520 NR NR 2/10/03 445.50 17.3% 105 NR NR 7/16/03 318.72 30.4% 219 NR NR 10/14/03 174.66 58.1% 112 NR NR 1/20/04 329.80 28.8% 687 NR NR 4/20/04 381.14 22.8% 272 NR NR 8/4/04 105.72 76.6% 308 NR NR 11/4/04 99.56 78.7% 2419 61.1 65.0 2/8/05 40 NR NR 5/2/05 344 NR NR 9/28/05 520 NR NR 10/25/05 520 NR NR 12/13/05 88 NR NR						
12/11/01123.5271.0%520NRNR2/10/03445.5017.3%105NRNR7/16/03318.7230.4%219NRNR10/14/03174.6658.1%112NRNR1/20/04329.8028.8%687NRNR4/20/04381.1422.8%272NRNR8/4/04105.7276.6%308NRNR11/4/0499.5678.7%241961.165.02/8/0540NRNR5/2/05344NRNR8/17/05630NRNR9/28/05520NRNR10/25/05140NRNR12/13/0588NRNR						
2/10/03445.5017.3%105NRNR7/16/03318.7230.4%219NRNR10/14/03174.6658.1%112NRNR1/20/04329.8028.8%687NRNR4/20/04381.1422.8%272NRNR8/4/04105.7276.6%308NRNR11/4/0499.5678.7%241961.165.02/8/0540NRNR5/2/05344NRNR8/17/05630NRNR9/28/05520NRNR10/25/05140NRNR12/13/0588NRNR						
7/16/03 318.72 30.4% 219 NR NR 10/14/03 174.66 58.1% 112 NR NR 1/20/04 329.80 28.8% 687 NR NR 4/20/04 381.14 22.8% 272 NR NR 8/4/04 105.72 76.6% 308 NR NR 11/4/04 99.56 78.7% 2419 61.1 65.0 2/8/05 40 NR NR 5/2/05 344 NR NR 8/17/05 630 NR NR 9/28/05 520 NR NR 10/25/05 140 NR NR 12/13/05 88 NR NR						
10/14/03 174.66 58.1% 112 NR NR 1/20/04 329.80 28.8% 687 NR NR 4/20/04 381.14 22.8% 272 NR NR 8/4/04 105.72 76.6% 308 NR NR 11/4/04 99.56 78.7% 2419 61.1 65.0 2/8/05 40 NR NR 5/2/05 344 NR NR 8/17/05 630 NR NR 9/28/05 520 NR NR 10/25/05 140 NR NR 12/13/05 88 NR NR						
1/20/04 329.80 28.8% 687 NR NR 4/20/04 381.14 22.8% 272 NR NR 8/4/04 105.72 76.6% 308 NR NR 11/4/04 99.56 78.7% 2419 61.1 65.0 2/8/05 40 NR NR 5/2/05 344 NR NR 8/17/05 630 NR NR 9/28/05 520 NR NR 10/25/05 140 NR NR 12/13/05 88 NR NR						
4/20/04 381.14 22.8% 272 NR NR 8/4/04 105.72 76.6% 308 NR NR 11/4/04 99.56 78.7% 2419 61.1 65.0 2/8/05 40 NR NR 5/2/05 344 NR NR 8/17/05 630 NR NR 9/28/05 520 NR NR 10/25/05 140 NR NR 12/13/05 88 NR NR						
8/4/04 105.72 76.6% 308 NR NR 11/4/04 99.56 78.7% 2419 61.1 65.0 2/8/05 40 NR NR 5/2/05 344 NR NR 8/17/05 630 NR NR 9/28/05 520 NR NR 10/25/05 140 NR NR 12/13/05 88 NR NR	4/20/04	381.14				
11/4/04 99.56 78.7% 2419 61.1 65.0 2/8/05 40 NR NR 5/2/05 344 NR NR 8/17/05 630 NR NR 9/28/05 520 NR NR 10/25/05 140 NR NR 12/13/05 88 NR NR	8/4/04	105.72		308		
2/8/05 40 NR NR 5/2/05 344 NR NR 8/17/05 630 NR NR 9/28/05 520 NR NR 10/25/05 140 NR NR 12/13/05 88 NR NR						
5/2/05 344 NR NR 8/17/05 630 NR NR 9/28/05 520 NR NR 10/25/05 140 NR NR 12/13/05 88 NR NR				40		
8/17/05 630 NR NR 9/28/05 520 NR NR 10/25/05 140 NR NR 12/13/05 88 NR NR						
9/28/05 520 NR NR 10/25/05 140 NR NR 12/13/05 88 NR NR						
10/25/05 140 NR NR 12/13/05 88 NR NR						
12/13/05 88 NR NR						
90 th Percentile Concentration 608 NR NR		entile Con	centration			

Table C-29. Required Load Reduction for Lick Creek – Mile 1.0

Note: NR = No reduction required

^a Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-46 of C-54

	Table 0-50. Required Load Reduction for Lick Oreek – Mile 5.0					
				Required Reduction		
Sample	Flow	PDFE	Sample	Sample to	Sample to	
Date	11000	I DI L	Concentration	Target	Target – MOS	
Duic				(487 CFU/100 ml)	(438 CFU/100 ml)	
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]	
8/17/00			517	5.8	15.5	
7/20/05			866	43.8	49.4	
8/17/05			291	NR	NR	
9/28/05			105	NR	NR	
10/25/05			200	NR	NR	
11/16/05			579	15.9	24.4	
90 th Perce	90 th Percentile Concentration		723	32.6	39.4	

Table C-30. Required Load Reduction for Lick Creek – Mile 3.8

Note: NR = No reduction required

Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

Reductions for individual samples (shaded area) are included for reference only.

	<u></u>			<u> </u>	
				Required Reduction	
Sample	Flow	PDFE	Sample	Sample to	Sample to
Date	11000	, DIC	Concentration	Target	Target – MOS
Date				(941 CFU/100 ml)	(847 CFU/100 ml)
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]
8/16/00			411	NR	NR
7/20/05			1350	63.9	67.6
8/17/05			387	NR	NR
9/28/05			300	NR	NR
10/25/05			310	NR	NR
11/16/05			300	NR	NR
12/13/05			520	6.3	15.8
90 th Perce	entile Cond	42.8	48.6		

Table C-31. Required Load Reduction for Lick Creek – Mile 6.5

Note: NR = No reduction required

Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-47 of C-54

Table C-J	Table C-32. Required Load Reduction for Lick Creek – whe TT.9					
	Required Reduction					
Sample	Flow	PDFE	Sample	Sample to	Sample to	
Date	1100	I DI L	Concentration	Target	Target – MOS	
Date				(941 CFU/100 ml)	(847 CFU/100 ml)	
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]	
8/15/00	53.57	91.5%	261	NR	NR	
9/14/00	35.20	98.4%	630	NR	NR	
10/10/00	36.50	97.9%	91	NR	NR	
11/7/00	25.89	100.0%	345	NR	NR	
12/5/00	31.67	99.2%	166	NR	NR	
1/4/01	44.10	95.6%	71	NR	NR	
1/30/01	120.34	68.5%	73	NR	NR	
2/28/01	410.15	16.9%	148	NR	NR	
3/27/01	224.57	42.7%	770	NR	NR	
4/24/01	192.51	49.6%	238	NR	NR	
5/22/01	180.66	52.3%	411	NR	NR	
6/19/01	137.13	63.9%	179	NR	NR	
7/24/01	136.77	64.1%	2720	65.4	68.9	
9/12/01	174.95	53.8%	630	NR	NR	
12/11/01	112.94	70.6%	11300	91.7	92.5	
90 th Perce	90 th Percentile Concentration		1940	51.5	56.3	

Note: NR = No reduction required

Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-48 of C-54

Table 0-35. Required Edda Reduction for Elek Oreek – Mile 13.5							
Sample Date	Flow	PDFE	Sample Concentration	Required Reduction			
				Sample to	Sample to		
				Target	Target – MOS		
				(941 CFU/100 ml)	(847 CFU/100 ml)		
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]		
8/16/00			461	NR	NR		
7/20/05			6970	86.5	87.8		
8/17/05			410	NR	NR		
9/28/05			210	NR	NR		
10/25/05			410	NR	NR		
11/16/05			1203	21.8	29.6		
12/13/05			200	NR	NR		
90 th Percentile Concentration			3510	73.2	75.9		

Table C-33. Required Load Reduction for Lick Creek – Mile 15.5

Note: NR = No reduction required

^a Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.
 ^b Deductions for individual complex (abaded area) are included for reference only.

Reductions for individual samples (shaded area) are included for reference only.

	Flow	PDFE	Sample Concentration	Required Reduction				
Sample Date				Sample to	Sample to			
				Target	Target – MOS			
Date				(941 CFU/100 ml)	(847 CFU/100 ml)			
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]			
8/15/00	48.39	92.5%	310	NR	NR			
9/14/00	31.80	98.4%	488	NR	NR			
10/10/00	32.97	97.9%	1986	52.6	57.4			
11/7/00	23.39	100.0%	980	4.0	13.6			
12/5/00	28.61	99.2%	88	NR	NR			
1/4/01	39.84	96.1%	2419	61.1	65.0			
1/30/01	108.70	69.7%	107	NR	NR			
2/28/01	370.49	17.2%	99	NR	NR			
3/27/01	202.85	43.4%	579	NR	NR			
4/24/01	173.89	50.4%	219	NR	NR			
5/22/01	163.19	53.2%	299	NR	NR			
6/19/01	123.87	65.0%	300	NR	NR			
7/24/01	123.54	65.2%	410	NR	NR			
9/12/01	158.03	54.7%	3590	73.8	76.4			
12/11/01	102.02	71.8%	6270	85.0	86.5			
90 th Percentile Concentration			3122	70.0	72.9			

Table C-34. Required Load Reduction for Lick Creek – Mile 20.5

Note: NR = No reduction required

^a Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-49 of C-54

Table C-35. Required Load Reduction for Mink Creek – Mile 1.0								
				Required	Reduction			
Sample	Flow	PDFE	Sample	Sample to	Sample to			
Date	11000	IDIL	Concentration	Target	Target – MOS			
Duic				(941 CFU/100 ml)	(847 CFU/100 ml)			
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]			
8/15/00	1.57	93.9%	1580	40.4	46.4			
9/14/00	1.08	99.7%	4110	77.1	79.4			
10/10/00	1.34	97.6%	2419	61.1	65.0			
11/7/00	0.98	100.0%	1986	52.6	57.4			
12/5/00	1.39	96.6%	687	NR	NR			
1/4/01	1.85	91.3%	326	NR	NR			
1/30/01	4.85	62.5%	461	NR	NR			
2/28/01	14.05	19.2%	199	NR	NR			
3/27/01	8.08	41.8%	166	NR	NR			
4/24/01	6.59	49.9%	980	4.0	13.6			
5/22/01	7.25	45.9%	1733	45.7	51.1			
6/19/01	4.12	68.5%	1046	10.0	19.0			
7/24/01	4.17	68.0%	2720	65.4	68.9			
9/12/01	5.91	54.9%	1203	21.8	29.6			
12/11/01	4.05	69.2%	5560	83.1	84.8			
7/20/05			5910	84.1	85.7			
8/17/05			9330	89.9	90.9			
9/28/05			2030	53.6	58.3			
90 th Perce	entile Cond	centration	5665	83.4	85.1			

Table C-35	Required Load Reduction for Mink Creek – Mile 1.0
Table C-35.	Required Load Reduction for whith Creek – while 1.0

Note:

NR = No reduction required Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days. Reductions for individual samples (shaded area) are included for reference only.

b

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-50 of C-54

Table C-36. Required Load Reduction for Potter Creek – Mile 0.5							
				Required	Reduction		
Sample	Flow	PDFE	Sample	Sample to	Sample to		
	Date	I DI L	Concentration	Target	Target – MOS		
Duto				(941 CFU/100 ml)	(847 CFU/100 ml)		
	[cfs]	[%]	[CFU/100 ml]	[%]	[%]		
12/5/00	0.96	94.6%	1986	52.6	57.4		
1/4/01	1.34	87.6%	1986	52.6	57.4		
1/30/01	3.90	53.6%	921	NR	8.0		
2/28/01	11.91	18.6%	411	NR	NR		
3/27/01	5.05	44.8%	1300	27.6	34.8		
4/24/01	3.78	54.8%	2419	61.1	65.0		
5/22/01	21.12	8.8%	2419	61.1	65.0		
6/19/01	2.49	69.2%	13960	93.3	93.9		
7/24/01	2.51	69.0%	16640	94.3	94.9		
9/12/01	3.16	61.3%	2920	67.8	71.0		
12/11/01	3.04	62.7%	45690	97.9	98.1		
7/20/05			630	NR	NR		
8/17/05			1040	9.5	18.6		
9/28/05			10	NR	NR		
10/25/05			200	NR	NR		
11/16/05			2030	53.6	58.3		
12/13/05			410	NR	NR		
90 th Perce	entile Cond	centration	15,032	93.7	94.4		

 Table C-36.
 Required Load Reduction for Potter Creek – Mile 0.3

Note: NR = No reduction required

^a Geometric Mean is calculated whenever 5 or more samples are collected over a period of not more than 30 consecutive days.

^b Reductions for individual samples (shaded area) are included for reference only.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-51 of C-54

		1	L.		-				
						,	WLAs		
HUC-12 Subwatershed (06010108_) or Drainage Area (DA)	Impaired Waterbody Name	Impaired Waterbody ID	TMDL	MOS	WWTFs ^a	Leaking Collection Systems [°]	CAFOs	MS4s ^d	LAs
/			[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day/acre]	[CFU/day/acre]
	Little Limestone Creek	TN06010108510 - 1000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	1.920 x 10 ^{10,b}	NA	NA	2.122 x 10 ⁶ * Q – 1.968 x 10 ⁶	2.122 x 10 ⁶ * Q – 1.968 x 10 ⁶
0206	Little Limestone Creek	TN06010108510 - 2000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	1.920 x 10 ^{10,b}	0	NA	1.046 x 10 ⁶ * Q − 9.698 x 10 ⁵	1.046 x 10 ⁶ * Q – 9.698 x 10 ⁵
	Hominy Branch	TN06010108510 - 0400	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	8.434 x 10 ⁶ * Q	8.434 x 10 ⁶ * Q
0401	Muddy Fork	TN06010108030 - 0430	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	2.042 x 10 ⁶ * Q	2.042 x 10 ⁶ * Q
	Big Limestone Creek	TN06010108030 - 1000	1.20 x 10 ¹⁰ * Q	1.20 x 10 ⁹ * Q	1.781 x 10 ⁸	NA	NA	2.246 x 10 ⁵ * Q – 3.704 x 10 ³	2.246 x 10 ⁵ * Q – 3.704 x 10 ³
0402	Big Limestone Creek	TN06010108030 - 2000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	1.781 x 10 ⁸	NA	NA	6.142 x 10 ⁵ * Q − 5.285 x 10 ³	6.142 x 10 ⁵ * Q − 5.285 x 10 ³
0.01	Carson Creek	TN06010108030 - 0220	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	3.375 x 10 ⁶ * Q	3.375 x 10 ⁶ * Q
	Jockey Creek	TN06010108030 - 0200	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	1.859 x 10 ⁶ * Q	1.859 x 10 ⁶ * Q
0501 (DA)	Sinking Creek	TN06010108064 – 1000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	8.548 x 10 ⁸	NA	NA	NA	2.186 x 10 ⁶ * Q – 9.026 x 10⁴
0001(0)()	Sinking Creek	TN06010108064 - 2000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	NA	3.252 x 10 ⁶ * Q
0504	Richland Creek	TN06010108102 - 2000	1.20 x 10 ¹⁰ * Q	1.20 x 10 ⁹ * Q	NA	0	NA	1.207 x 10 ⁶ * Q	1.207 x 10 ⁶ * Q
	Nolichucky River	TN06010108005 - 2000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	2.773 x 10 ^{11,b}	NA	0	NA	1.360 x 10⁴ * Q – 3.493 x 10⁵
0505	Meadow Creek	TN06010108007 – 1000	1.20 x 10 ¹⁰ * Q	1.20 x 10 ⁹ * Q	3.318 x 10 ⁸	NA	0	NA	8.513 x 10 ⁵ * Q – 2.615x 10 ⁴
	Pigeon Creek	TN06010108033 - 1000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	0	NA	NA	5.169 x 10 ⁶ * Q
0601	Nolichucky River	TN06010108001 - 1000	1.20 x 10 ¹⁰ * Q	1.20 x 10 ⁹ * Q	2.773 x 10 ^{11,b}	NA	0	1.007 x 10 ⁴ * Q − 2.586 x 10 ⁵	1.007 x 10 ⁴ * Q – 2.586 x 10 ⁵
0001	Nolichucky River	TN06010108001 - 2000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	2.773 x 10 ^{11,b}	NA	0	1.021 x 10 ⁴ * Q − 2.621 x 10 ⁵	1.021 x 10 ⁴ * Q − 2.621 x 10 ⁵
0603	Bent Creek	TN06010108042 - 1000	1.20 x 10 ¹⁰ * Q	1.20 x 10 ⁹ * Q	NA	NA	0	3.645 x 10 ⁵ * Q	3.645 x 10⁵ * Q
0003	Mud Creek	TN06010108042 - 0600	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	9.675 x 10 ⁶ * Q	9.675 x 10 ⁶ * Q
0604	Flat Creek	TN06010108001 - 0100	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	3.919 x 10 ⁶ * Q	3.919 x 10 ⁶ * Q
0605	Long Creek	TN06010108043 - 1000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	9.509 x 10 ⁵ * Q	9.509 x 10 ⁵ * Q

Table C-37 TMDLs, WLAs, & LAs for Impaired Subwatersheds and Drainage Areas in the Nolichucky River Watershed

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-52 of C-54

			n						
HUC-12 Subwatershed (06010108_) or Drainage Area (DA)	Impaired Waterbody Name	Impaired Waterbody ID	TMDL	MOS	WWTFs ^a	Leaking Collection Systems	CAFOs	MS4s °	LAs
7 100 (274)			[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day/acre]	[CFU/day/acre]
	Lick Creek	TN06010108035 - 8000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	0	NA	6.173 x 10 ⁵ * Q
0701	Lick Creek	TN06010108035 - 9000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	NA	2.669 x 10 ⁶ * Q
	Pyborn Creek	TN06010108035 – 1800	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	NA	7.720 x 10 ⁶ * Q
	Lick Creek	TN06010108035 - 6000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	3.882 x 10 ⁹	NA	0	NA	1.920 x 10 ⁵ * Q − 3.601 x 10 ⁴
0702	Lick Creek	TN06010108035 – 7000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	3.562 x 10 ⁹	0	NA	NA	3.332 x 10 ⁵ * Q – 5.733 x 10 ⁴
	Puncheon Camp Creek	TN06010108035 - 0900	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	NA	4.469 x 10 ⁶ * Q
	Lick Creek	TN06010108035 - 1000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	3.889 x 10 ¹⁰	NA	NA	NA	1.251 x 10 ⁵ * Q – 2.350 x 10 ⁵
	Lick Creek	TN06010108035 – 2000	1.20 x 10 ¹⁰ * Q	1.20 x 10 ⁹ * Q	3.889 x 10 ¹⁰	NA	NA	NA	6.546 x 10 ⁴ * Q – 2.357 x 10 ⁵
	Lick Creek	TN06010108035 – 3000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	3.861 x 10 ¹⁰	NA	NA	NA	1.268 x 10 ⁵ * Q − 2.365 x 10 ⁵
0705	Lick Creek	TN06010108035 - 4000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	3.861 x 10 ¹⁰	NA	NA	NA	1.376 x 10 ⁵ * Q – 2.567 x 10 ⁵
	Lick Creek	TN06010108035 - 5000	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	3.861 x 10 ¹⁰	0	NA	NA	1.385 x 10 ⁵ * Q − 2.583 x 10 ⁵
	Mink Creek	TN06010108035 – 2800	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	0	NA	NA	3.400 x 10 ⁶ * Q
	Potter Creek	TN06010108035 - 0200	2.30 x 10 ¹⁰ * Q	2.30 x 10 ⁹ * Q	NA	NA	NA	NA	4.376 x 10 ⁶ * Q

Table C-37 (cont'd) TMDLs, WLAs, & LAs for Impaired Subwatersheds and Drainage Areas in the Nolichucky River Watershed

Notes: NA = Not Applicable.

Q = Mean Instream Daily Flow (cfs)

a. WLAs for WWTFs are expressed as E. coli loads (CFU/day). All current and future WWTFs must meet water quality standards at the point of discharge as specified in their NPDES permit; at no time shall concentration be greater than the appropriate E. coli standard (487 CFU/100 mL or 941 CFU/100 mL).

b. The WLA listed is for the subwatershed and is equal to the sum of the WLAs for the individual facilities. WLAs for individual WWTFs correspond to existing E. coli permit limits at facility design flow.

c. Applies to any MS4 discharge loading in the subwatershed.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-53 of C-54

						WLAs			
HUC-12 Subwatershed (06010108)	Impaired Waterbody	Impaired Waterbody ID	% Red. to	ww	TFs ^a	Leaking Collection	CAFOs	% Red. to	% Red. to
or Drainage Area (DA)	Name		Achieve TMDL	Monthly Avg.	Daily Max.	Systems	041 03	Achieve MS4 ^c	Achieve LA
			[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day]	WLA		
	Little Limestone Creek	TN06010108510 - 1000	54.6	NA	NA	NA	NA	59.1	59.1
0206	Little Limestone Creek	TN06010108510 - 2000	98.8	2.571 x 10 ^{9,b}	1.920 x 10 ^{10,b}	0	NA	98.9	98.9
	Hominy Branch	TN06010108510 - 0400	60.6	NA	NA	NA	NA	64.6	64.6
0401	Muddy Fork	TN0601010830 - 0430	79.7	NA	NA	NA	NA	81.7	81.7
	Big Limestone Creek	TN06010108030 - 1000	74.4	NA	NA	NA	NA	76.9	76.9
0402	Big Limestone Creek	TN06010108030 - 2000	54.2	2.385 x 10 ⁷	1.781 x 10 ⁸	NA	NA	58.7	58.7
0402	Carson Creek	TN06010108030 - 0220	89.1	NA	NA	NA	NA	90.2	90.2
	Jockey Creek	TN06010108030 - 0200	70.0	NA	NA	NA	NA	73.0	73.0
	Sinking Creek	TN06010108064 - 1000	69.7	1.145 x 10 ⁸	8.548 x 10 ⁸	NA	NA	NA	72.7
0501 (DA)	Sinking Creek	TN06010108064 - 2000	43.4	NA	NA	NA	NA	NA	49.0
0504	Richland Creek	TN06010108102 - 2000	99.3	NA	NA	0	NA	99.4	99.4
0505 (DA)	Meadow Creek	TN06010108007 - 1000	95.3	8.584 x 10 ⁷	3.318 x 10 ⁸	NA	0	NA	95.8
0505 (DA)	Pigeon Creek	TN06010108033 - 1000	65.7	NA	NA	0	NA	NA	69.1
0601	Nolichucky River	TN06010108001 - 1000	45.1	3.338 x 10 ⁷	2.493 x 10 ⁸	NA	0	50.8	50.8
0000	Bent Creek	TN06010108042 - 1000	93.5	NA	NA	NA	0	94.2	94.2
0603	Mud Creek	TN06010108042 - 0600	75.7	NA	NA	NA	NA	78.2	78.2
0604	Flat Creek	TN06010108001 - 0100	92.6	NA	NA	NA	NA	93.4	93.4
0605	Long Creek	TN06010108043 - 1000	78.5	NA	NA	NA	NA	80.7	80.7

Table C-38 Required Reductions to Achieve TMDLs, WLAs, & LAs for Nolichucky River Watershed

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page C-54 of C-54

HUC-12 Subwatershed (06010108_)	Impaired Waterbody	Impaired Waterbody ID	% Red. to	WW	TFs ^a	Leaking Collection	CAFOs	% Red. to	% Red. to
or Drainage Area (DA)	Name		Achieve TMDL	Monthly Avg.	Daily Max.	Systems	041 03	Achieve MS4 ^c	Achieve LA
				[CFU/day]	[CFU/day]	[CFU/day]	[CFU/day]	WLA	
	Lick Creek	TN06010108035 - 8000	29.1	NA	NA	NA	0	NA	36.2
0701	Lick Creek	TN06010108035 - 9000	61.1	NA	NA	NA	NA	NA	65.0
	Pyborn Creek	TN06010108035 - 1800	81.4	NA	NA	NA	NA	NA	83.3
	Lick Creek	TN06010108035 - 6000	39.4	4.292 x 10 ⁷	3.206 x 10 ⁸	NA	0	NA	45.5
0702	Lick Creek	TN06010108035 - 7000	47.4	4.769 x 10 ⁸	3.562 x 10 ⁹	0	NA	NA	52.7
	Puncheon Camp Creek	TN06010108035 - 0900	26.5	NA	NA	NA	NA	NA	33.9
	Lick Creek	TN06010108035 - 1000	NR	NA	NA	NA	NA	NA	NR
	Lick Creek	TN06010108035 - 2000	32.6	7.154 x 10 ⁷	2.765 x 10 ⁸	NA	NA	NA	39.4
	Lick Creek	TN06010108035 - 3000	51.5	NA	NA	NA	NA	NA	56.3
0705	Lick Creek	TN06010108035 - 4000	73.2	NA	NA	NA	NA	NA	75.9
	Lick Creek	TN06010108035 - 5000	70.0	4.650 x 10 ⁹	3.473 x 10 ¹⁰	0	NA	NA	72.9
	Mink Creek	TN06010108035 - 2800	83.4	NA	NA	0	NA	NA	95.1
	Potter Creek	TN06010108035 - 0200	93.7	NA	NA	NA	NA	NA	94.4

Table C-38 (cont'd) Required Reductions to Achieve TMDLs, WLAs, & LAs for Nolichucky River Watershed

Notes: NA = Not Applicable.

a. WLAs for WWTFs are expressed as E. coli loads (CFU/day). All current and future WWTFs must meet water quality standards at the point of discharge as specified in their NPDES permit; at no time shall concentration be greater than the appropriate E. coli standard (487 CFU/100 mL or 941 CFU/100 mL).

b. The WLA listed is for the subwatershed and is equal to the sum of the WLAs for the individual facilities. WLAs for individual WWTFs correspond to existing E. coli permit limits at facility design flow.

c. Applies to any MS4 discharge loading in the subwatershed.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page D-1 of D-8

APPENDIX D

Hydrodynamic Modeling Methodology

HYDRODYNAMIC MODELING METHODOLOGY

D.1 Model Selection

The Loading Simulation Program C++ (LSPC) was selected for flow simulation of pathogen-impaired waters in the subwatersheds of the Nolichucky River Watershed. LSPC is a watershed model capable of performing flow routing through stream reaches. LSPC is a dynamic watershed model based on the Hydrologic Simulation Program - Fortran (HSPF)

D.2 Model Set Up

The Nolichucky River Watershed was delineated into subwatersheds in order to facilitate model hydrologic calibration. Boundaries were constructed so that subwatershed "pour points" coincided with HUC-12 delineations, 303(d)-listed waterbodies, and water quality monitoring stations. Watershed delineation was based on the NHD stream coverage and Digital Elevation Model (DEM) data. This discretization facilitates simulation of daily flows at water quality monitoring stations.

Several computer-based tools were utilized to generate input data for the LSPC model. The Watershed Characterization System (WCS), a geographic information system (GIS) tool, was used to display, analyze, and compile available information to support hydrology model simulations for selected subwatersheds. This information includes land use categories, point source dischargers, soil types and characteristics, population data (human and livestock), and stream characteristics.

An important factor influencing model results is the precipitation data contained in the meteorological data files used in these simulations. Weather data from multiple meteorological stations were available for the time period from January 1970 through December 2004. Meteorological data for a selected 11-year period were used for all simulations. The first year of this period was used for model stabilization with simulation data from the subsequent 10-year period (10/1/94 – 9/30/04) used for TMDL analysis.

D.3 Model Calibration

Hydrologic calibration of the watershed model involves comparison of simulated streamflow to historic streamflow data from U. S. Geological Survey (USGS) stream gaging stations for the same period of time. Three USGS continuous record stations located in or near the Nolichucky River Watershed with a sufficiently long and recent historical record was selected as the basis of the hydrology calibration. The USGS stations were selected based on similarity of drainage area, Level IV ecoregion, land use, and topography. The calibration involved comparison of simulated and observed hydrographs until statistical stream volumes and flows were within acceptable ranges as reported in the literature (Lumb, et al., 1994).

Initial values for hydrologic variables were taken from an EPA developed default data set. During the calibration process, model parameters were adjusted within reasonable constraints until acceptable agreement was achieved between simulated and observed streamflow. Model parameters adjusted include: evapotranspiration, infiltration, upper and lower zone storage, groundwater storage, recession, losses to the deep groundwater system, and interflow discharge.

The results of the hydrologic calibration for Sinking Creek at Afton, USGS Station 03466228, drainage area 13.7 square miles, are shown in Table D-1 and Figures D-1 and D-2. The results of the hydrologic calibration for Little Pigeon River at Sevierville, USGS Station 03470000, drainage area 353 square miles, are shown in Table D-2 and Figures D-3 and D-4. The results of the hydrologic calibration for Nolichucky River at Embreeville, USGS Station 03465500, drainage area 805 square miles, are shown in Table D-3 and Figures D-5 and D-6.

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page D-3 of D-8

Table D-1. Hydrologic Calibration Summary: Sinking Creek at Afton (USGS 03466228)

		15.17498776		
Simulation Name:	USGS03466228	Simulation Period:		
		Watershed Area (ac):	9715.10	
Period for Flow Analysis				
Begin Date:	10/01/90	Baseflow PERCENTILE:	2.5	
End Date:	09/30/00	Usually 1%-5%		
Total Simulated In-stream Flow:	122.33	Total Observed In-stream Flow:	130.90	
Total of highest 10% flows:	41.48	Total of Observed highest 10% flows:	45.73	
Total of lowest 50% flows:	25.77	Total of Observed Lowest 50% flows:	27.02	
Simulated Summer Flow Volume (months 7-9):	16.07	Observed Summer Flow Volume (7-9):	17.40	
Simulated Fall Flow Volume (months 10-12):	16.69	Observed Fall Flow Volume (10-12):	17.49	
Simulated Winter Flow Volume (months 1-3):	51.48	Observed Winter Flow Volume (1-3):	57.25	
Simulated Spring Flow Volume (months 4-6):	38.09	Observed Spring Flow Volume (4-6):	38.77	
Total Simulated Storm Volume:	98.72	Total Observed Storm Volume:	104.08	
Simulated Summer Storm Volume (7-9):	10.14	Observed Summer Storm Volume (7-9):	10.64	
Errors (Simulated-Observed)		Recommended Criteria	Last run	
Error in total volume:	-6.55	10		
Error in 50% lowest flows:	-4.62	10		
Error in 10% highest flows:	-9.29	15		
Seasonal volume error - Summer:	-7.60	30		
Seasonal volume error - Fall:	-4.58	30		
Seasonal volume error - Winter:	-10.08	30		
Seasonal volume error - Spring:	-1.75	30		
Error in storm volumes:	-5.15	20		
Error in summer storm volumes:	-4.65	50		
Criteria for Median Monthly Flow Co	omparisons			
Lower Bound (Percentile):	25			
Upper Bound (Percentile):	75			

(2/12/07 - Final) Page D-4 of D-8 • Observed flow (10/1/1990 to 9/30/2000) - Modeled flow over the same period 1000 100 FLOW (CFS) 10 1 0.1 10 20 30 50 40 60 70 80 100 0 90 Percent of time indicated flows are equaled or exceeded

E. coli TMDL

Nolichucky River Watershed (HUC 06010108)

Figure D-1. Hydrologic Calibration: Sinking Creek, USGS 03466228 (WYs1991-2000)

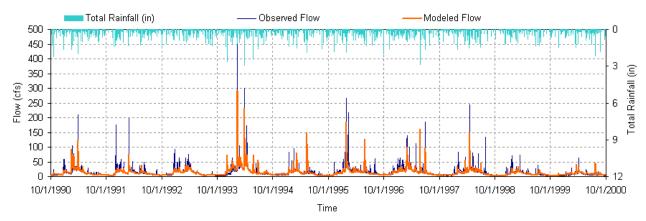


Figure D-2. 10-Year Hydrologic Comparison: Sinking Creek, USGS 03466228

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page D-5 of D-8 Table D-2. Hydrologic Calibration Summary: Little Pigeon River (USGS 03470000)

Simulation Period: Watershed Area (ac): Baseflow PERCENTILE: Usually 1%-5% Observed In-stream Flow: Observed highest 10% flows: Observed Lowest 50% flows: ed Summer Flow Volume (7-9): ed Fall Flow Volume (10-12): ed Winter Flow Volume (1-3):	223005.80 2.5 248.46 96.90 44.02 33.46 49.83
Baseflow PERCENTILE: Usually 1%-5% oserved In-stream Flow: Observed highest 10% flows: Observed Lowest 50% flows: ed Summer Flow Volume (7-9): ed Fall Flow Volume (10-12): ed Winter Flow Volume (1-3):	2.5 248.46 96.90 44.02 33.46 49.83
Usually 1%-5% oserved In-stream Flow: Observed highest 10% flows: Observed Lowest 50% flows: ed Summer Flow Volume (7-9): ed Fall Flow Volume (10-12): ed Winter Flow Volume (1-3):	248.46 96.90 44.02 33.46 49.83
Usually 1%-5% oserved In-stream Flow: Observed highest 10% flows: Observed Lowest 50% flows: ed Summer Flow Volume (7-9): ed Fall Flow Volume (10-12): ed Winter Flow Volume (1-3):	248.46 96.90 44.02 33.46 49.83
oserved In-stream Flow: Observed highest 10% flows: Observed Lowest 50% flows: ed Summer Flow Volume (7-9): ed Fall Flow Volume (10-12): ed Winter Flow Volume (1-3):	96.90 44.02 33.46 49.83
Observed highest 10% flows: Observed Lowest 50% flows: ed Summer Flow Volume (7-9): ed Fall Flow Volume (10-12): ed Winter Flow Volume (1-3):	96.90 44.02 33.46 49.83
Observed Lowest 50% flows: ed Summer Flow Volume (7-9): ed Fall Flow Volume (10-12): ed Winter Flow Volume (1-3):	44.02 33.46 49.83
ed Summer Flow Volume (7-9): ed Fall Flow Volume (10-12): ed Winter Flow Volume (1-3):	33.46 49.83
ed Fall Flow Volume (10-12): ed Winter Flow Volume (1-3):	49.83
ed Winter Flow Volume (1-3):	
	99.35
ed Spring Flow Volume (4-6):	65.82
served Storm Volume:	214.24
ed Summer Storm Volume (7-9):	24.86
Recommended Criteria	Last run
10	
10	
15	
30	
30	
30	
30	
20	
50	
5	ed Spring Flow Volume (4-6): served Storm Volume: ed Summer Storm Volume (7-9) <i>Recommended Criteria</i> 10 10 15 30 30 30 30 20

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page D-6 of D-8

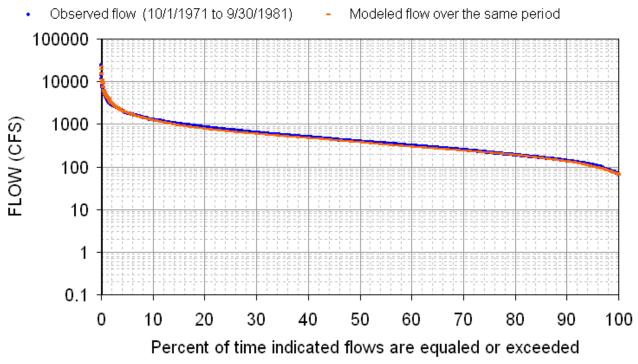
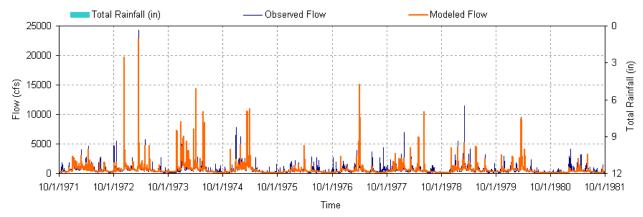
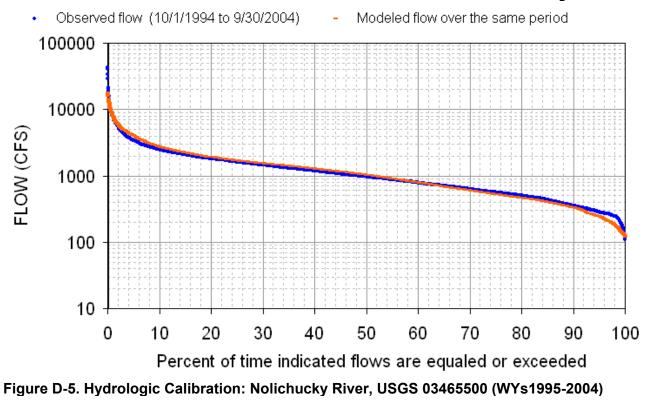


Figure D-3. Hydrologic Calibration: Little Pigeon River, USGS 03470000 (WYs1972-1982)




Figure D-4. 10-Year Hydrologic Comparison: Little Pigeon River, USGS 03470000

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page D-7 of D-8

		782.7364754			
Simulation Name:	USGS03465500	Simulation Period:			
		Watershed Area (ac):	501111.70		
Period for Flow Analysis					
Begin Date:	10/01/94	Baseflow PERCENTILE:	2.5		
End Date:	09/30/04	Usually 1%–5%			
Total Simulated In-stream Flow:	244.36	Total Observed In-stream Flow:	238.89		
Fotal of highest 10% flows:	83.86	Total of Observed highest 10% flows:	83.37		
Total of lowest 50% flows:	47.76	Total of Observed Lowest 50% flows:	49.59		
Simulated Summer Flow Volume (months 7-9):	51.23	Observed Summer Flow Volume (7-9):	42.56		
Simulated Fall Flow Volume (months 10-12):	33.16	Observed Fall Flow Volume (10-12):	38.39		
Simulated Winter Flow Volume (months 1-3):	85.13	Observed Winter Flow Volume (1-3):	90.93		
Simulated Spring Flow Volume (months 4-6):	74.84	Observed Spring Flow Volume (4-6):	67.01		
Total Simulated Storm Volume:	210.90	Total Observed Storm Volume:	195.13		
Simulated Summer Storm Volume (7-9):	42.87	Observed Summer Storm Volume (7-9):	31.67		
Errors (Simulated-Observed)		Recommended Criteria	Last run		
Error in total volume:	2.29	10			
Error in 50% lowest flows:	-3.70	10			
Error in 10% highest flows:	0.59	15			
Seasonal volume error - Summer:	20.37	30			
Seasonal volume error - Fall:	-13.61	30			
Seasonal volume error - Winter:	-6.38	30			
Seasonal volume error - Spring:	11.69	30			
Error in storm volumes:	8.08	20			
Error in summer storm volumes:	35.35	50			
Criteria for Median Monthly Flow Co	omparisons				
Lower Bound (Percentile):	25				
Upper Bound (Percentile):	75				

Table D-3. Hydrologic Calibration Summary: Nolichucky River (USGS 03465500)

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page D-8 of D-8

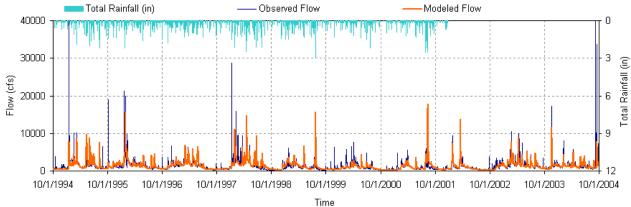


Figure D-6. 10-Year Hydrologic Comparison: Nolichucky River, USGS 03465500

E. coli TMDL Nolichucky River Watershed (HUC 06010108) (2/12/07 - Final) Page E-1 of E-2

APPENDIX E

Public Notice Announcement

STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER POLLUTION CONTROL

PUBLIC NOTICE OF AVAILABILITY OF PROPOSED TOTAL MAXIMUM DAILY LOAD (TMDL) FOR E. COLI IN NOLICHUCKY RIVER WATERSHED (HUC 06010108), TENNESSEE

Announcement is hereby given of the availability of Tennessee's proposed Total Maximum Daily Load (TMDL) for E. coli in the Nolichucky River watershed, located in eastern Tennessee. Section 303(d) of the Clean Water Act requires states to develop TMDLs for waters on their impaired waters list. TMDLs must determine the allowable pollutant load that the water can assimilate, allocate that load among the various point and nonpoint sources, include a margin of safety, and address seasonality.

A number of waterbodies in the Nolichucky River watershed are listed on Tennessee's Final 2006 303(d) list as not supporting designated use classifications due, in part, to discharge of pathogens from pasture land and livestock in stream. The TMDL utilizes Tennessee's general water quality criteria, continuous flow data from a USGS discharge monitoring station located in proximity to the watershed, site specific water quality monitoring data, a calibrated hydrologic model, load duration curves, and an appropriate Margin of Safety (MOS) to establish allowable loadings of pathogens which will result in the reduced in-stream concentrations and attainment of water quality standards. The TMDL requires reductions of pathogen loading on the order of 26-99% in the listed waterbodies.

The proposed Nolichucky River E. coli TMDL may be downloaded from the Department of Environment and Conservation website:

http://www.state.tn.us/environment/wpc/tmdl/

Technical questions regarding this TMDL should be directed to the following members of the Division of Water Pollution Control staff:

Vicki S. Steed, P.E., Watershed Management Section Telephone: 615-532-0707

Sherry H. Wang, Ph.D., Watershed Management Section Telephone: 615-532-0656

Persons wishing to comment on the proposed TMDLs are invited to submit their comments in writing no later than January 15, 2007 to:

Division of Water Pollution Control Watershed Management Section 7th Floor, L & C Annex 401 Church Street Nashville, TN 37243-1534

All comments received prior to that date will be considered when revising the TMDL for final submittal to the U.S. Environmental Protection Agency.

The TMDL and supporting information are on file at the Division of Water Pollution Control, 6th Floor, L & C Annex, 401 Church Street, Nashville, Tennessee. They may be inspected during normal office hours. Copies of the information on file are available on request.